| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ufilfil | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 2 |  | ufilmax | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑓  ∈  ( Fil ‘ 𝑋 )  ∧  𝐹  ⊆  𝑓 )  →  𝐹  =  𝑓 ) | 
						
							| 3 | 2 | 3expia | ⊢ ( ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ∧  𝑓  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝐹  ⊆  𝑓  →  𝐹  =  𝑓 ) ) | 
						
							| 4 | 3 | ralrimiva | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑓  →  𝐹  =  𝑓 ) ) | 
						
							| 5 | 1 4 | jca | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  →  ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑓  →  𝐹  =  𝑓 ) ) ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑓  →  𝐹  =  𝑓 ) )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 7 |  | velpw | ⊢ ( 𝑥  ∈  𝒫  𝑋  ↔  𝑥  ⊆  𝑋 ) | 
						
							| 8 |  | simpll | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 9 |  | vsnex | ⊢ { 𝑥 }  ∈  V | 
						
							| 10 |  | unexg | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  { 𝑥 }  ∈  V )  →  ( 𝐹  ∪  { 𝑥 } )  ∈  V ) | 
						
							| 11 | 8 9 10 | sylancl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  ( 𝐹  ∪  { 𝑥 } )  ∈  V ) | 
						
							| 12 |  | ssfii | ⊢ ( ( 𝐹  ∪  { 𝑥 } )  ∈  V  →  ( 𝐹  ∪  { 𝑥 } )  ⊆  ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  ( 𝐹  ∪  { 𝑥 } )  ⊆  ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) ) | 
						
							| 14 |  | filsspw | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝐹  ⊆  𝒫  𝑋 ) | 
						
							| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  𝐹  ⊆  𝒫  𝑋 ) | 
						
							| 16 | 7 | biimpri | ⊢ ( 𝑥  ⊆  𝑋  →  𝑥  ∈  𝒫  𝑋 ) | 
						
							| 17 | 16 | ad2antlr | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  𝑥  ∈  𝒫  𝑋 ) | 
						
							| 18 | 17 | snssd | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  { 𝑥 }  ⊆  𝒫  𝑋 ) | 
						
							| 19 | 15 18 | unssd | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  ( 𝐹  ∪  { 𝑥 } )  ⊆  𝒫  𝑋 ) | 
						
							| 20 |  | ssun2 | ⊢ { 𝑥 }  ⊆  ( 𝐹  ∪  { 𝑥 } ) | 
						
							| 21 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 22 | 21 | snnz | ⊢ { 𝑥 }  ≠  ∅ | 
						
							| 23 |  | ssn0 | ⊢ ( ( { 𝑥 }  ⊆  ( 𝐹  ∪  { 𝑥 } )  ∧  { 𝑥 }  ≠  ∅ )  →  ( 𝐹  ∪  { 𝑥 } )  ≠  ∅ ) | 
						
							| 24 | 20 22 23 | mp2an | ⊢ ( 𝐹  ∪  { 𝑥 } )  ≠  ∅ | 
						
							| 25 | 24 | a1i | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  ( 𝐹  ∪  { 𝑥 } )  ≠  ∅ ) | 
						
							| 26 |  | simpr | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ ) | 
						
							| 27 |  | ineq2 | ⊢ ( 𝑓  =  𝑥  →  ( 𝑦  ∩  𝑓 )  =  ( 𝑦  ∩  𝑥 ) ) | 
						
							| 28 | 27 | neeq1d | ⊢ ( 𝑓  =  𝑥  →  ( ( 𝑦  ∩  𝑓 )  ≠  ∅  ↔  ( 𝑦  ∩  𝑥 )  ≠  ∅ ) ) | 
						
							| 29 | 21 28 | ralsn | ⊢ ( ∀ 𝑓  ∈  { 𝑥 } ( 𝑦  ∩  𝑓 )  ≠  ∅  ↔  ( 𝑦  ∩  𝑥 )  ≠  ∅ ) | 
						
							| 30 | 29 | ralbii | ⊢ ( ∀ 𝑦  ∈  𝐹 ∀ 𝑓  ∈  { 𝑥 } ( 𝑦  ∩  𝑓 )  ≠  ∅  ↔  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ ) | 
						
							| 31 | 26 30 | sylibr | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  ∀ 𝑦  ∈  𝐹 ∀ 𝑓  ∈  { 𝑥 } ( 𝑦  ∩  𝑓 )  ≠  ∅ ) | 
						
							| 32 |  | filfbas | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝐹  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 33 | 32 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  𝐹  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 34 |  | simplr | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  𝑥  ⊆  𝑋 ) | 
						
							| 35 |  | inss2 | ⊢ ( 𝑋  ∩  𝑥 )  ⊆  𝑥 | 
						
							| 36 |  | filtop | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝑋  ∈  𝐹 ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  →  𝑋  ∈  𝐹 ) | 
						
							| 38 |  | ineq1 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑦  ∩  𝑥 )  =  ( 𝑋  ∩  𝑥 ) ) | 
						
							| 39 | 38 | neeq1d | ⊢ ( 𝑦  =  𝑋  →  ( ( 𝑦  ∩  𝑥 )  ≠  ∅  ↔  ( 𝑋  ∩  𝑥 )  ≠  ∅ ) ) | 
						
							| 40 | 39 | rspcva | ⊢ ( ( 𝑋  ∈  𝐹  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  ( 𝑋  ∩  𝑥 )  ≠  ∅ ) | 
						
							| 41 | 37 40 | sylan | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  ( 𝑋  ∩  𝑥 )  ≠  ∅ ) | 
						
							| 42 |  | ssn0 | ⊢ ( ( ( 𝑋  ∩  𝑥 )  ⊆  𝑥  ∧  ( 𝑋  ∩  𝑥 )  ≠  ∅ )  →  𝑥  ≠  ∅ ) | 
						
							| 43 | 35 41 42 | sylancr | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  𝑥  ≠  ∅ ) | 
						
							| 44 | 36 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  𝑋  ∈  𝐹 ) | 
						
							| 45 |  | snfbas | ⊢ ( ( 𝑥  ⊆  𝑋  ∧  𝑥  ≠  ∅  ∧  𝑋  ∈  𝐹 )  →  { 𝑥 }  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 46 | 34 43 44 45 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  { 𝑥 }  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 47 |  | fbunfip | ⊢ ( ( 𝐹  ∈  ( fBas ‘ 𝑋 )  ∧  { 𝑥 }  ∈  ( fBas ‘ 𝑋 ) )  →  ( ¬  ∅  ∈  ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) )  ↔  ∀ 𝑦  ∈  𝐹 ∀ 𝑓  ∈  { 𝑥 } ( 𝑦  ∩  𝑓 )  ≠  ∅ ) ) | 
						
							| 48 | 33 46 47 | syl2anc | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  ( ¬  ∅  ∈  ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) )  ↔  ∀ 𝑦  ∈  𝐹 ∀ 𝑓  ∈  { 𝑥 } ( 𝑦  ∩  𝑓 )  ≠  ∅ ) ) | 
						
							| 49 | 31 48 | mpbird | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  ¬  ∅  ∈  ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) ) | 
						
							| 50 |  | fsubbas | ⊢ ( 𝑋  ∈  𝐹  →  ( ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) )  ∈  ( fBas ‘ 𝑋 )  ↔  ( ( 𝐹  ∪  { 𝑥 } )  ⊆  𝒫  𝑋  ∧  ( 𝐹  ∪  { 𝑥 } )  ≠  ∅  ∧  ¬  ∅  ∈  ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) ) ) ) | 
						
							| 51 | 44 50 | syl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  ( ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) )  ∈  ( fBas ‘ 𝑋 )  ↔  ( ( 𝐹  ∪  { 𝑥 } )  ⊆  𝒫  𝑋  ∧  ( 𝐹  ∪  { 𝑥 } )  ≠  ∅  ∧  ¬  ∅  ∈  ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) ) ) ) | 
						
							| 52 | 19 25 49 51 | mpbir3and | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) )  ∈  ( fBas ‘ 𝑋 ) ) | 
						
							| 53 |  | ssfg | ⊢ ( ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) )  ∈  ( fBas ‘ 𝑋 )  →  ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) )  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) ) ) | 
						
							| 54 | 52 53 | syl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) )  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) ) ) | 
						
							| 55 | 13 54 | sstrd | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  ( 𝐹  ∪  { 𝑥 } )  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) ) ) | 
						
							| 56 | 55 | unssad | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  𝐹  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) ) ) | 
						
							| 57 |  | fgcl | ⊢ ( ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) )  ∈  ( fBas ‘ 𝑋 )  →  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) )  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 58 |  | sseq2 | ⊢ ( 𝑓  =  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) )  →  ( 𝐹  ⊆  𝑓  ↔  𝐹  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) ) ) ) | 
						
							| 59 |  | eqeq2 | ⊢ ( 𝑓  =  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) )  →  ( 𝐹  =  𝑓  ↔  𝐹  =  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) ) ) ) | 
						
							| 60 | 58 59 | imbi12d | ⊢ ( 𝑓  =  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) )  →  ( ( 𝐹  ⊆  𝑓  →  𝐹  =  𝑓 )  ↔  ( 𝐹  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) )  →  𝐹  =  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) ) ) ) ) | 
						
							| 61 | 60 | rspcv | ⊢ ( ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) )  ∈  ( Fil ‘ 𝑋 )  →  ( ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑓  →  𝐹  =  𝑓 )  →  ( 𝐹  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) )  →  𝐹  =  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) ) ) ) ) | 
						
							| 62 | 52 57 61 | 3syl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  ( ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑓  →  𝐹  =  𝑓 )  →  ( 𝐹  ⊆  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) )  →  𝐹  =  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) ) ) ) ) | 
						
							| 63 | 56 62 | mpid | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  ( ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑓  →  𝐹  =  𝑓 )  →  𝐹  =  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) ) ) ) | 
						
							| 64 |  | vsnid | ⊢ 𝑥  ∈  { 𝑥 } | 
						
							| 65 | 20 64 | sselii | ⊢ 𝑥  ∈  ( 𝐹  ∪  { 𝑥 } ) | 
						
							| 66 | 65 | a1i | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  𝑥  ∈  ( 𝐹  ∪  { 𝑥 } ) ) | 
						
							| 67 | 55 66 | sseldd | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  𝑥  ∈  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) ) ) | 
						
							| 68 |  | eleq2 | ⊢ ( 𝐹  =  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) )  →  ( 𝑥  ∈  𝐹  ↔  𝑥  ∈  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) ) ) ) | 
						
							| 69 | 67 68 | syl5ibrcom | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  ( 𝐹  =  ( 𝑋 filGen ( fi ‘ ( 𝐹  ∪  { 𝑥 } ) ) )  →  𝑥  ∈  𝐹 ) ) | 
						
							| 70 | 63 69 | syld | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ )  →  ( ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑓  →  𝐹  =  𝑓 )  →  𝑥  ∈  𝐹 ) ) | 
						
							| 71 | 70 | impancom | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ⊆  𝑋 )  ∧  ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑓  →  𝐹  =  𝑓 ) )  →  ( ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅  →  𝑥  ∈  𝐹 ) ) | 
						
							| 72 | 71 | an32s | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑓  →  𝐹  =  𝑓 ) )  ∧  𝑥  ⊆  𝑋 )  →  ( ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅  →  𝑥  ∈  𝐹 ) ) | 
						
							| 73 | 72 | con3d | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑓  →  𝐹  =  𝑓 ) )  ∧  𝑥  ⊆  𝑋 )  →  ( ¬  𝑥  ∈  𝐹  →  ¬  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ ) ) | 
						
							| 74 |  | rexnal | ⊢ ( ∃ 𝑦  ∈  𝐹 ¬  ( 𝑦  ∩  𝑥 )  ≠  ∅  ↔  ¬  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅ ) | 
						
							| 75 |  | nne | ⊢ ( ¬  ( 𝑦  ∩  𝑥 )  ≠  ∅  ↔  ( 𝑦  ∩  𝑥 )  =  ∅ ) | 
						
							| 76 |  | filelss | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑦  ∈  𝐹 )  →  𝑦  ⊆  𝑋 ) | 
						
							| 77 |  | reldisj | ⊢ ( 𝑦  ⊆  𝑋  →  ( ( 𝑦  ∩  𝑥 )  =  ∅  ↔  𝑦  ⊆  ( 𝑋  ∖  𝑥 ) ) ) | 
						
							| 78 | 76 77 | syl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑦  ∈  𝐹 )  →  ( ( 𝑦  ∩  𝑥 )  =  ∅  ↔  𝑦  ⊆  ( 𝑋  ∖  𝑥 ) ) ) | 
						
							| 79 |  | difss | ⊢ ( 𝑋  ∖  𝑥 )  ⊆  𝑋 | 
						
							| 80 |  | filss | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑦  ∈  𝐹  ∧  ( 𝑋  ∖  𝑥 )  ⊆  𝑋  ∧  𝑦  ⊆  ( 𝑋  ∖  𝑥 ) ) )  →  ( 𝑋  ∖  𝑥 )  ∈  𝐹 ) | 
						
							| 81 | 80 | 3exp2 | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( 𝑦  ∈  𝐹  →  ( ( 𝑋  ∖  𝑥 )  ⊆  𝑋  →  ( 𝑦  ⊆  ( 𝑋  ∖  𝑥 )  →  ( 𝑋  ∖  𝑥 )  ∈  𝐹 ) ) ) ) | 
						
							| 82 | 79 81 | mpii | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( 𝑦  ∈  𝐹  →  ( 𝑦  ⊆  ( 𝑋  ∖  𝑥 )  →  ( 𝑋  ∖  𝑥 )  ∈  𝐹 ) ) ) | 
						
							| 83 | 82 | imp | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑦  ∈  𝐹 )  →  ( 𝑦  ⊆  ( 𝑋  ∖  𝑥 )  →  ( 𝑋  ∖  𝑥 )  ∈  𝐹 ) ) | 
						
							| 84 | 78 83 | sylbid | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑦  ∈  𝐹 )  →  ( ( 𝑦  ∩  𝑥 )  =  ∅  →  ( 𝑋  ∖  𝑥 )  ∈  𝐹 ) ) | 
						
							| 85 | 75 84 | biimtrid | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑦  ∈  𝐹 )  →  ( ¬  ( 𝑦  ∩  𝑥 )  ≠  ∅  →  ( 𝑋  ∖  𝑥 )  ∈  𝐹 ) ) | 
						
							| 86 | 85 | rexlimdva | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( ∃ 𝑦  ∈  𝐹 ¬  ( 𝑦  ∩  𝑥 )  ≠  ∅  →  ( 𝑋  ∖  𝑥 )  ∈  𝐹 ) ) | 
						
							| 87 | 74 86 | biimtrrid | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ( ¬  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅  →  ( 𝑋  ∖  𝑥 )  ∈  𝐹 ) ) | 
						
							| 88 | 87 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑓  →  𝐹  =  𝑓 ) )  ∧  𝑥  ⊆  𝑋 )  →  ( ¬  ∀ 𝑦  ∈  𝐹 ( 𝑦  ∩  𝑥 )  ≠  ∅  →  ( 𝑋  ∖  𝑥 )  ∈  𝐹 ) ) | 
						
							| 89 | 73 88 | syld | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑓  →  𝐹  =  𝑓 ) )  ∧  𝑥  ⊆  𝑋 )  →  ( ¬  𝑥  ∈  𝐹  →  ( 𝑋  ∖  𝑥 )  ∈  𝐹 ) ) | 
						
							| 90 | 89 | orrd | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑓  →  𝐹  =  𝑓 ) )  ∧  𝑥  ⊆  𝑋 )  →  ( 𝑥  ∈  𝐹  ∨  ( 𝑋  ∖  𝑥 )  ∈  𝐹 ) ) | 
						
							| 91 | 7 90 | sylan2b | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑓  →  𝐹  =  𝑓 ) )  ∧  𝑥  ∈  𝒫  𝑋 )  →  ( 𝑥  ∈  𝐹  ∨  ( 𝑋  ∖  𝑥 )  ∈  𝐹 ) ) | 
						
							| 92 | 91 | ralrimiva | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑓  →  𝐹  =  𝑓 ) )  →  ∀ 𝑥  ∈  𝒫  𝑋 ( 𝑥  ∈  𝐹  ∨  ( 𝑋  ∖  𝑥 )  ∈  𝐹 ) ) | 
						
							| 93 |  | isufil | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ↔  ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑥  ∈  𝒫  𝑋 ( 𝑥  ∈  𝐹  ∨  ( 𝑋  ∖  𝑥 )  ∈  𝐹 ) ) ) | 
						
							| 94 | 6 92 93 | sylanbrc | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑓  →  𝐹  =  𝑓 ) )  →  𝐹  ∈  ( UFil ‘ 𝑋 ) ) | 
						
							| 95 | 5 94 | impbii | ⊢ ( 𝐹  ∈  ( UFil ‘ 𝑋 )  ↔  ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ∀ 𝑓  ∈  ( Fil ‘ 𝑋 ) ( 𝐹  ⊆  𝑓  →  𝐹  =  𝑓 ) ) ) |