| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isum1p.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | isum1p.3 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | isum1p.4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  𝐴 ) | 
						
							| 4 |  | isum1p.5 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐴  ∈  ℂ ) | 
						
							| 5 |  | isum1p.6 | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 6 |  | eqid | ⊢ ( ℤ≥ ‘ ( 𝑀  +  1 ) )  =  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) | 
						
							| 7 |  | uzid | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 8 | 2 7 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 9 |  | peano2uz | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 11 | 10 1 | eleqtrrdi | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  𝑍 ) | 
						
							| 12 | 1 6 11 3 4 5 | isumsplit | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝑍 𝐴  =  ( Σ 𝑘  ∈  ( 𝑀 ... ( ( 𝑀  +  1 )  −  1 ) ) 𝐴  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) 𝐴 ) ) | 
						
							| 13 | 2 | zcnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 14 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 15 |  | pncan | ⊢ ( ( 𝑀  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑀  +  1 )  −  1 )  =  𝑀 ) | 
						
							| 16 | 13 14 15 | sylancl | ⊢ ( 𝜑  →  ( ( 𝑀  +  1 )  −  1 )  =  𝑀 ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝜑  →  ( 𝑀 ... ( ( 𝑀  +  1 )  −  1 ) )  =  ( 𝑀 ... 𝑀 ) ) | 
						
							| 18 | 17 | sumeq1d | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝑀 ... ( ( 𝑀  +  1 )  −  1 ) ) 𝐴  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑀 ) 𝐴 ) | 
						
							| 19 |  | elfzuz | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑀 )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 20 | 19 1 | eleqtrrdi | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑀 )  →  𝑘  ∈  𝑍 ) | 
						
							| 21 | 20 3 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑀 ) )  →  ( 𝐹 ‘ 𝑘 )  =  𝐴 ) | 
						
							| 22 | 21 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑀 ) ( 𝐹 ‘ 𝑘 )  =  Σ 𝑘  ∈  ( 𝑀 ... 𝑀 ) 𝐴 ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑘  =  𝑀  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 24 | 23 | eleq1d | ⊢ ( 𝑘  =  𝑀  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ↔  ( 𝐹 ‘ 𝑀 )  ∈  ℂ ) ) | 
						
							| 25 | 3 4 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 26 | 25 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝑍 ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 27 | 8 1 | eleqtrrdi | ⊢ ( 𝜑  →  𝑀  ∈  𝑍 ) | 
						
							| 28 | 24 26 27 | rspcdva | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  ∈  ℂ ) | 
						
							| 29 | 23 | fsum1 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  ( 𝐹 ‘ 𝑀 )  ∈  ℂ )  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑀 ) ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 30 | 2 28 29 | syl2anc | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝑀 ... 𝑀 ) ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 31 | 18 22 30 | 3eqtr2d | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝑀 ... ( ( 𝑀  +  1 )  −  1 ) ) 𝐴  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 32 | 31 | oveq1d | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( 𝑀 ... ( ( 𝑀  +  1 )  −  1 ) ) 𝐴  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) 𝐴 )  =  ( ( 𝐹 ‘ 𝑀 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) 𝐴 ) ) | 
						
							| 33 | 12 32 | eqtrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝑍 𝐴  =  ( ( 𝐹 ‘ 𝑀 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) 𝐴 ) ) |