Step |
Hyp |
Ref |
Expression |
1 |
|
isumadd.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
isumadd.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
isumadd.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
4 |
|
isumadd.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
5 |
|
isumadd.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
6 |
|
isumadd.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
7 |
|
isumadd.7 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
8 |
|
isumadd.8 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ) |
9 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑘 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝐺 ‘ 𝑚 ) = ( 𝐺 ‘ 𝑘 ) ) |
11 |
9 10
|
oveq12d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐹 ‘ 𝑚 ) + ( 𝐺 ‘ 𝑚 ) ) = ( ( 𝐹 ‘ 𝑘 ) + ( 𝐺 ‘ 𝑘 ) ) ) |
12 |
|
eqid |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) + ( 𝐺 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) + ( 𝐺 ‘ 𝑚 ) ) ) |
13 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑘 ) + ( 𝐺 ‘ 𝑘 ) ) ∈ V |
14 |
11 12 13
|
fvmpt |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) + ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) + ( 𝐺 ‘ 𝑘 ) ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) + ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) + ( 𝐺 ‘ 𝑘 ) ) ) |
16 |
3 5
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) + ( 𝐺 ‘ 𝑘 ) ) = ( 𝐴 + 𝐵 ) ) |
17 |
15 16
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) + ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( 𝐴 + 𝐵 ) ) |
18 |
4 6
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
19 |
1 2 3 4 7
|
isumclim2 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ Σ 𝑘 ∈ 𝑍 𝐴 ) |
20 |
|
seqex |
⊢ seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) + ( 𝐺 ‘ 𝑚 ) ) ) ) ∈ V |
21 |
20
|
a1i |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) + ( 𝐺 ‘ 𝑚 ) ) ) ) ∈ V ) |
22 |
1 2 5 6 8
|
isumclim2 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ⇝ Σ 𝑘 ∈ 𝑍 𝐵 ) |
23 |
3 4
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
24 |
1 2 23
|
serf |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℂ ) |
25 |
24
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
26 |
5 6
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
27 |
1 2 26
|
serf |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) : 𝑍 ⟶ ℂ ) |
28 |
27
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ∈ ℂ ) |
29 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) |
30 |
29 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
31 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → 𝜑 ) |
32 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
33 |
32 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ 𝑍 ) |
34 |
33
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
35 |
31 34 23
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
36 |
31 34 26
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
37 |
34 14
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) + ( 𝐺 ‘ 𝑚 ) ) ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) + ( 𝐺 ‘ 𝑘 ) ) ) |
38 |
30 35 36 37
|
seradd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) + ( 𝐺 ‘ 𝑚 ) ) ) ) ‘ 𝑗 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) + ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑗 ) ) ) |
39 |
1 2 19 21 22 25 28 38
|
climadd |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) + ( 𝐺 ‘ 𝑚 ) ) ) ) ⇝ ( Σ 𝑘 ∈ 𝑍 𝐴 + Σ 𝑘 ∈ 𝑍 𝐵 ) ) |
40 |
1 2 17 18 39
|
isumclim |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 ( 𝐴 + 𝐵 ) = ( Σ 𝑘 ∈ 𝑍 𝐴 + Σ 𝑘 ∈ 𝑍 𝐵 ) ) |