Description: The sum of a converging infinite series is a complex number. (Contributed by NM, 13-Dec-2005) (Revised by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumcl.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isumcl.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| isumcl.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | ||
| isumcl.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | ||
| isumcl.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | ||
| Assertion | isumcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumcl.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isumcl.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | isumcl.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
| 4 | isumcl.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | |
| 5 | isumcl.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 6 | 1 2 3 4 | isum | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
| 7 | fclim | ⊢ ⇝ : dom ⇝ ⟶ ℂ | |
| 8 | ffvelcdm | ⊢ ( ( ⇝ : dom ⇝ ⟶ ℂ ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ∈ ℂ ) | |
| 9 | 7 5 8 | sylancr | ⊢ ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ∈ ℂ ) |
| 10 | 6 9 | eqeltrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ ) |