Description: The sum of a converging infinite series is a complex number. (Contributed by NM, 13-Dec-2005) (Revised by Mario Carneiro, 23-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isumcl.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
isumcl.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
isumcl.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | ||
isumcl.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | ||
isumcl.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | ||
Assertion | isumcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumcl.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
2 | isumcl.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
3 | isumcl.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
4 | isumcl.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | |
5 | isumcl.5 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | |
6 | 1 2 3 4 | isum | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
7 | fclim | ⊢ ⇝ : dom ⇝ ⟶ ℂ | |
8 | ffvelrn | ⊢ ( ( ⇝ : dom ⇝ ⟶ ℂ ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ∈ ℂ ) | |
9 | 7 5 8 | sylancr | ⊢ ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ∈ ℂ ) |
10 | 6 9 | eqeltrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ ) |