Metamath Proof Explorer


Theorem isumcl

Description: The sum of a converging infinite series is a complex number. (Contributed by NM, 13-Dec-2005) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumcl.1 𝑍 = ( ℤ𝑀 )
isumcl.2 ( 𝜑𝑀 ∈ ℤ )
isumcl.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
isumcl.4 ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
isumcl.5 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ )
Assertion isumcl ( 𝜑 → Σ 𝑘𝑍 𝐴 ∈ ℂ )

Proof

Step Hyp Ref Expression
1 isumcl.1 𝑍 = ( ℤ𝑀 )
2 isumcl.2 ( 𝜑𝑀 ∈ ℤ )
3 isumcl.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
4 isumcl.4 ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
5 isumcl.5 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ )
6 1 2 3 4 isum ( 𝜑 → Σ 𝑘𝑍 𝐴 = ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) )
7 fclim ⇝ : dom ⇝ ⟶ ℂ
8 ffvelrn ( ( ⇝ : dom ⇝ ⟶ ℂ ∧ seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ∈ ℂ )
9 7 5 8 sylancr ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ∈ ℂ )
10 6 9 eqeltrd ( 𝜑 → Σ 𝑘𝑍 𝐴 ∈ ℂ )