Metamath Proof Explorer


Theorem isumclim2

Description: A converging series converges to its infinite sum. (Contributed by NM, 2-Jan-2006) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumclim.1 𝑍 = ( ℤ𝑀 )
isumclim.2 ( 𝜑𝑀 ∈ ℤ )
isumclim.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
isumclim.4 ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
isumclim2.5 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ )
Assertion isumclim2 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ Σ 𝑘𝑍 𝐴 )

Proof

Step Hyp Ref Expression
1 isumclim.1 𝑍 = ( ℤ𝑀 )
2 isumclim.2 ( 𝜑𝑀 ∈ ℤ )
3 isumclim.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
4 isumclim.4 ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
5 isumclim2.5 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ )
6 climdm ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) )
7 5 6 sylib ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) )
8 1 2 3 4 isum ( 𝜑 → Σ 𝑘𝑍 𝐴 = ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) )
9 7 8 breqtrrd ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ Σ 𝑘𝑍 𝐴 )