Step |
Hyp |
Ref |
Expression |
1 |
|
isumcl.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
isumcl.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
isumcl.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
4 |
|
isumcl.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
5 |
|
isumcl.5 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
6 |
|
summulc.6 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
7 |
|
isumdivc.7 |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
8 |
6 7
|
reccld |
⊢ ( 𝜑 → ( 1 / 𝐵 ) ∈ ℂ ) |
9 |
1 2 3 4 5 8
|
isummulc1 |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝑍 𝐴 · ( 1 / 𝐵 ) ) = Σ 𝑘 ∈ 𝑍 ( 𝐴 · ( 1 / 𝐵 ) ) ) |
10 |
1 2 3 4 5
|
isumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ ) |
11 |
10 6 7
|
divrecd |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝑍 𝐴 / 𝐵 ) = ( Σ 𝑘 ∈ 𝑍 𝐴 · ( 1 / 𝐵 ) ) ) |
12 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
13 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ≠ 0 ) |
14 |
4 12 13
|
divrecd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
15 |
14
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 ( 𝐴 / 𝐵 ) = Σ 𝑘 ∈ 𝑍 ( 𝐴 · ( 1 / 𝐵 ) ) ) |
16 |
9 11 15
|
3eqtr4d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝑍 𝐴 / 𝐵 ) = Σ 𝑘 ∈ 𝑍 ( 𝐴 / 𝐵 ) ) |