| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isumrecl.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
isumrecl.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
isumrecl.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
| 4 |
|
isumrecl.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) |
| 5 |
|
isumrecl.5 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 6 |
|
isumge0.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ 𝐴 ) |
| 7 |
4
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
| 8 |
1 2 3 7 5
|
isumclim2 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ Σ 𝑘 ∈ 𝑍 𝐴 ) |
| 9 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 10 |
9
|
cbvsumv |
⊢ Σ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) = Σ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) |
| 11 |
3
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ 𝑍 𝐴 ) |
| 12 |
10 11
|
eqtrid |
⊢ ( 𝜑 → Σ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) = Σ 𝑘 ∈ 𝑍 𝐴 ) |
| 13 |
8 12
|
breqtrrd |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ Σ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ) |
| 14 |
3 4
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 15 |
6 3
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 16 |
1 2 13 14 15
|
iserge0 |
⊢ ( 𝜑 → 0 ≤ Σ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ) |
| 17 |
16 12
|
breqtrd |
⊢ ( 𝜑 → 0 ≤ Σ 𝑘 ∈ 𝑍 𝐴 ) |