Step |
Hyp |
Ref |
Expression |
1 |
|
isumrecl.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
isumrecl.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
isumrecl.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
4 |
|
isumrecl.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) |
5 |
|
isumrecl.5 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
6 |
|
isumge0.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ 𝐴 ) |
7 |
4
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
8 |
1 2 3 7 5
|
isumclim2 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ Σ 𝑘 ∈ 𝑍 𝐴 ) |
9 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑘 ) ) |
10 |
9
|
cbvsumv |
⊢ Σ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) = Σ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) |
11 |
3
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ 𝑍 𝐴 ) |
12 |
10 11
|
eqtrid |
⊢ ( 𝜑 → Σ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) = Σ 𝑘 ∈ 𝑍 𝐴 ) |
13 |
8 12
|
breqtrrd |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ Σ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ) |
14 |
3 4
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
15 |
6 3
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
16 |
1 2 13 14 15
|
iserge0 |
⊢ ( 𝜑 → 0 ≤ Σ 𝑗 ∈ 𝑍 ( 𝐹 ‘ 𝑗 ) ) |
17 |
16 12
|
breqtrd |
⊢ ( 𝜑 → 0 ≤ Σ 𝑘 ∈ 𝑍 𝐴 ) |