Metamath Proof Explorer


Theorem isumge0

Description: An infinite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 28-Apr-2014)

Ref Expression
Hypotheses isumrecl.1 𝑍 = ( ℤ𝑀 )
isumrecl.2 ( 𝜑𝑀 ∈ ℤ )
isumrecl.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
isumrecl.4 ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℝ )
isumrecl.5 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ )
isumge0.6 ( ( 𝜑𝑘𝑍 ) → 0 ≤ 𝐴 )
Assertion isumge0 ( 𝜑 → 0 ≤ Σ 𝑘𝑍 𝐴 )

Proof

Step Hyp Ref Expression
1 isumrecl.1 𝑍 = ( ℤ𝑀 )
2 isumrecl.2 ( 𝜑𝑀 ∈ ℤ )
3 isumrecl.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
4 isumrecl.4 ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℝ )
5 isumrecl.5 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ )
6 isumge0.6 ( ( 𝜑𝑘𝑍 ) → 0 ≤ 𝐴 )
7 4 recnd ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
8 1 2 3 7 5 isumclim2 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ Σ 𝑘𝑍 𝐴 )
9 fveq2 ( 𝑗 = 𝑘 → ( 𝐹𝑗 ) = ( 𝐹𝑘 ) )
10 9 cbvsumv Σ 𝑗𝑍 ( 𝐹𝑗 ) = Σ 𝑘𝑍 ( 𝐹𝑘 )
11 3 sumeq2dv ( 𝜑 → Σ 𝑘𝑍 ( 𝐹𝑘 ) = Σ 𝑘𝑍 𝐴 )
12 10 11 eqtrid ( 𝜑 → Σ 𝑗𝑍 ( 𝐹𝑗 ) = Σ 𝑘𝑍 𝐴 )
13 8 12 breqtrrd ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ Σ 𝑗𝑍 ( 𝐹𝑗 ) )
14 3 4 eqeltrd ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
15 6 3 breqtrrd ( ( 𝜑𝑘𝑍 ) → 0 ≤ ( 𝐹𝑘 ) )
16 1 2 13 14 15 iserge0 ( 𝜑 → 0 ≤ Σ 𝑗𝑍 ( 𝐹𝑗 ) )
17 16 12 breqtrd ( 𝜑 → 0 ≤ Σ 𝑘𝑍 𝐴 )