| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isumle.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
isumle.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
isumle.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
| 4 |
|
isumle.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) |
| 5 |
|
isumle.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) |
| 6 |
|
isumle.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
| 7 |
|
isumle.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ≤ 𝐵 ) |
| 8 |
|
isumle.8 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 9 |
|
isumle.9 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 10 |
|
climdm |
⊢ ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
| 11 |
8 10
|
sylib |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
| 12 |
|
climdm |
⊢ ( seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ↔ seq 𝑀 ( + , 𝐺 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐺 ) ) ) |
| 13 |
9 12
|
sylib |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐺 ) ) ) |
| 14 |
3 4
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 15 |
5 6
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 16 |
7 3 5
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ 𝑘 ) ) |
| 17 |
1 2 11 13 14 15 16
|
iserle |
⊢ ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ≤ ( ⇝ ‘ seq 𝑀 ( + , 𝐺 ) ) ) |
| 18 |
4
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
| 19 |
1 2 3 18
|
isum |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
| 20 |
6
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
| 21 |
1 2 5 20
|
isum |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐵 = ( ⇝ ‘ seq 𝑀 ( + , 𝐺 ) ) ) |
| 22 |
17 19 21
|
3brtr4d |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 ≤ Σ 𝑘 ∈ 𝑍 𝐵 ) |