Step |
Hyp |
Ref |
Expression |
1 |
|
isumless.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
isumless.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
isumless.3 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
4 |
|
isumless.4 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑍 ) |
5 |
|
isumless.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) |
6 |
|
isumless.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
7 |
|
isumless.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ 𝐵 ) |
8 |
|
isumless.8 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
9 |
4
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝑍 ) |
10 |
6
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
11 |
9 10
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
12 |
11
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
13 |
1
|
eqimssi |
⊢ 𝑍 ⊆ ( ℤ≥ ‘ 𝑀 ) |
14 |
13
|
orci |
⊢ ( 𝑍 ⊆ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑍 ∈ Fin ) |
15 |
14
|
a1i |
⊢ ( 𝜑 → ( 𝑍 ⊆ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑍 ∈ Fin ) ) |
16 |
|
sumss2 |
⊢ ( ( ( 𝐴 ⊆ 𝑍 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) ∧ ( 𝑍 ⊆ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑍 ∈ Fin ) ) → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ 𝑍 if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
17 |
4 12 15 16
|
syl21anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ 𝑍 if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
18 |
|
eleq1w |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴 ) ) |
19 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑘 ) ) |
20 |
18 19
|
ifbieq1d |
⊢ ( 𝑗 = 𝑘 → if ( 𝑗 ∈ 𝐴 , ( 𝐹 ‘ 𝑗 ) , 0 ) = if ( 𝑘 ∈ 𝐴 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
21 |
|
eqid |
⊢ ( 𝑗 ∈ 𝑍 ↦ if ( 𝑗 ∈ 𝐴 , ( 𝐹 ‘ 𝑗 ) , 0 ) ) = ( 𝑗 ∈ 𝑍 ↦ if ( 𝑗 ∈ 𝐴 , ( 𝐹 ‘ 𝑗 ) , 0 ) ) |
22 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑘 ) ∈ V |
23 |
|
c0ex |
⊢ 0 ∈ V |
24 |
22 23
|
ifex |
⊢ if ( 𝑘 ∈ 𝐴 , ( 𝐹 ‘ 𝑘 ) , 0 ) ∈ V |
25 |
20 21 24
|
fvmpt |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑗 ∈ 𝑍 ↦ if ( 𝑗 ∈ 𝐴 , ( 𝐹 ‘ 𝑗 ) , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑗 ∈ 𝑍 ↦ if ( 𝑗 ∈ 𝐴 , ( 𝐹 ‘ 𝑗 ) , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
27 |
5
|
ifeq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → if ( 𝑘 ∈ 𝐴 , ( 𝐹 ‘ 𝑘 ) , 0 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
28 |
26 27
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑗 ∈ 𝑍 ↦ if ( 𝑗 ∈ 𝐴 , ( 𝐹 ‘ 𝑗 ) , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
29 |
|
0re |
⊢ 0 ∈ ℝ |
30 |
|
ifcl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℝ ) |
31 |
6 29 30
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℝ ) |
32 |
|
leid |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ≤ 𝐵 ) |
33 |
|
breq1 |
⊢ ( 𝐵 = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) → ( 𝐵 ≤ 𝐵 ↔ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ≤ 𝐵 ) ) |
34 |
|
breq1 |
⊢ ( 0 = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) → ( 0 ≤ 𝐵 ↔ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ≤ 𝐵 ) ) |
35 |
33 34
|
ifboth |
⊢ ( ( 𝐵 ≤ 𝐵 ∧ 0 ≤ 𝐵 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ≤ 𝐵 ) |
36 |
32 35
|
sylan |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ≤ 𝐵 ) |
37 |
6 7 36
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ≤ 𝐵 ) |
38 |
1 2 3 4 28 11
|
fsumcvg3 |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑗 ∈ 𝑍 ↦ if ( 𝑗 ∈ 𝐴 , ( 𝐹 ‘ 𝑗 ) , 0 ) ) ) ∈ dom ⇝ ) |
39 |
1 2 28 31 5 6 37 38 8
|
isumle |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ≤ Σ 𝑘 ∈ 𝑍 𝐵 ) |
40 |
17 39
|
eqbrtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ≤ Σ 𝑘 ∈ 𝑍 𝐵 ) |