Step |
Hyp |
Ref |
Expression |
1 |
|
isumltss.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
isumltss.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
isumltss.3 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
4 |
|
isumltss.4 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑍 ) |
5 |
|
isumltss.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) |
6 |
|
isumltss.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ+ ) |
7 |
|
isumltss.7 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
8 |
1
|
uzinf |
⊢ ( 𝑀 ∈ ℤ → ¬ 𝑍 ∈ Fin ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → ¬ 𝑍 ∈ Fin ) |
10 |
|
ssdif0 |
⊢ ( 𝑍 ⊆ 𝐴 ↔ ( 𝑍 ∖ 𝐴 ) = ∅ ) |
11 |
|
eqss |
⊢ ( 𝐴 = 𝑍 ↔ ( 𝐴 ⊆ 𝑍 ∧ 𝑍 ⊆ 𝐴 ) ) |
12 |
|
eleq1 |
⊢ ( 𝐴 = 𝑍 → ( 𝐴 ∈ Fin ↔ 𝑍 ∈ Fin ) ) |
13 |
3 12
|
syl5ibcom |
⊢ ( 𝜑 → ( 𝐴 = 𝑍 → 𝑍 ∈ Fin ) ) |
14 |
11 13
|
syl5bir |
⊢ ( 𝜑 → ( ( 𝐴 ⊆ 𝑍 ∧ 𝑍 ⊆ 𝐴 ) → 𝑍 ∈ Fin ) ) |
15 |
4 14
|
mpand |
⊢ ( 𝜑 → ( 𝑍 ⊆ 𝐴 → 𝑍 ∈ Fin ) ) |
16 |
10 15
|
syl5bir |
⊢ ( 𝜑 → ( ( 𝑍 ∖ 𝐴 ) = ∅ → 𝑍 ∈ Fin ) ) |
17 |
9 16
|
mtod |
⊢ ( 𝜑 → ¬ ( 𝑍 ∖ 𝐴 ) = ∅ ) |
18 |
|
neq0 |
⊢ ( ¬ ( 𝑍 ∖ 𝐴 ) = ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) |
19 |
17 18
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) |
20 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → 𝐴 ∈ Fin ) |
21 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → 𝐴 ⊆ 𝑍 ) |
22 |
21
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝑍 ) |
23 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ+ ) |
24 |
23
|
rpred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
25 |
22 24
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
26 |
20 25
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
27 |
|
snfi |
⊢ { 𝑥 } ∈ Fin |
28 |
|
unfi |
⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑥 } ∈ Fin ) → ( 𝐴 ∪ { 𝑥 } ) ∈ Fin ) |
29 |
20 27 28
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → ( 𝐴 ∪ { 𝑥 } ) ∈ Fin ) |
30 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) → 𝑥 ∈ 𝑍 ) |
31 |
30
|
snssd |
⊢ ( 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) → { 𝑥 } ⊆ 𝑍 ) |
32 |
4 31
|
anim12i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → ( 𝐴 ⊆ 𝑍 ∧ { 𝑥 } ⊆ 𝑍 ) ) |
33 |
|
unss |
⊢ ( ( 𝐴 ⊆ 𝑍 ∧ { 𝑥 } ⊆ 𝑍 ) ↔ ( 𝐴 ∪ { 𝑥 } ) ⊆ 𝑍 ) |
34 |
32 33
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → ( 𝐴 ∪ { 𝑥 } ) ⊆ 𝑍 ) |
35 |
34
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝑥 } ) ) → 𝑘 ∈ 𝑍 ) |
36 |
35 24
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝑥 } ) ) → 𝐵 ∈ ℝ ) |
37 |
29 36
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → Σ 𝑘 ∈ ( 𝐴 ∪ { 𝑥 } ) 𝐵 ∈ ℝ ) |
38 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → 𝑀 ∈ ℤ ) |
39 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) |
40 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
41 |
1 38 39 24 40
|
isumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → Σ 𝑘 ∈ 𝑍 𝐵 ∈ ℝ ) |
42 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → { 𝑥 } ∈ Fin ) |
43 |
|
vex |
⊢ 𝑥 ∈ V |
44 |
43
|
snnz |
⊢ { 𝑥 } ≠ ∅ |
45 |
44
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → { 𝑥 } ≠ ∅ ) |
46 |
31
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → { 𝑥 } ⊆ 𝑍 ) |
47 |
46
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ { 𝑥 } ) → 𝑘 ∈ 𝑍 ) |
48 |
47 23
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ { 𝑥 } ) → 𝐵 ∈ ℝ+ ) |
49 |
42 45 48
|
fsumrpcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → Σ 𝑘 ∈ { 𝑥 } 𝐵 ∈ ℝ+ ) |
50 |
26 49
|
ltaddrpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → Σ 𝑘 ∈ 𝐴 𝐵 < ( Σ 𝑘 ∈ 𝐴 𝐵 + Σ 𝑘 ∈ { 𝑥 } 𝐵 ) ) |
51 |
|
eldifn |
⊢ ( 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) → ¬ 𝑥 ∈ 𝐴 ) |
52 |
51
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → ¬ 𝑥 ∈ 𝐴 ) |
53 |
|
disjsn |
⊢ ( ( 𝐴 ∩ { 𝑥 } ) = ∅ ↔ ¬ 𝑥 ∈ 𝐴 ) |
54 |
52 53
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → ( 𝐴 ∩ { 𝑥 } ) = ∅ ) |
55 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → ( 𝐴 ∪ { 𝑥 } ) = ( 𝐴 ∪ { 𝑥 } ) ) |
56 |
23
|
rpcnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
57 |
35 56
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝑥 } ) ) → 𝐵 ∈ ℂ ) |
58 |
54 55 29 57
|
fsumsplit |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → Σ 𝑘 ∈ ( 𝐴 ∪ { 𝑥 } ) 𝐵 = ( Σ 𝑘 ∈ 𝐴 𝐵 + Σ 𝑘 ∈ { 𝑥 } 𝐵 ) ) |
59 |
50 58
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → Σ 𝑘 ∈ 𝐴 𝐵 < Σ 𝑘 ∈ ( 𝐴 ∪ { 𝑥 } ) 𝐵 ) |
60 |
23
|
rpge0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ 𝐵 ) |
61 |
1 38 29 34 39 24 60 40
|
isumless |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → Σ 𝑘 ∈ ( 𝐴 ∪ { 𝑥 } ) 𝐵 ≤ Σ 𝑘 ∈ 𝑍 𝐵 ) |
62 |
26 37 41 59 61
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑍 ∖ 𝐴 ) ) → Σ 𝑘 ∈ 𝐴 𝐵 < Σ 𝑘 ∈ 𝑍 𝐵 ) |
63 |
19 62
|
exlimddv |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 < Σ 𝑘 ∈ 𝑍 𝐵 ) |