| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isumltss.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | isumltss.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | isumltss.3 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 4 |  | isumltss.4 | ⊢ ( 𝜑  →  𝐴  ⊆  𝑍 ) | 
						
							| 5 |  | isumltss.5 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  𝐵 ) | 
						
							| 6 |  | isumltss.6 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐵  ∈  ℝ+ ) | 
						
							| 7 |  | isumltss.7 | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 8 | 1 | uzinf | ⊢ ( 𝑀  ∈  ℤ  →  ¬  𝑍  ∈  Fin ) | 
						
							| 9 | 2 8 | syl | ⊢ ( 𝜑  →  ¬  𝑍  ∈  Fin ) | 
						
							| 10 |  | ssdif0 | ⊢ ( 𝑍  ⊆  𝐴  ↔  ( 𝑍  ∖  𝐴 )  =  ∅ ) | 
						
							| 11 |  | eqss | ⊢ ( 𝐴  =  𝑍  ↔  ( 𝐴  ⊆  𝑍  ∧  𝑍  ⊆  𝐴 ) ) | 
						
							| 12 |  | eleq1 | ⊢ ( 𝐴  =  𝑍  →  ( 𝐴  ∈  Fin  ↔  𝑍  ∈  Fin ) ) | 
						
							| 13 | 3 12 | syl5ibcom | ⊢ ( 𝜑  →  ( 𝐴  =  𝑍  →  𝑍  ∈  Fin ) ) | 
						
							| 14 | 11 13 | biimtrrid | ⊢ ( 𝜑  →  ( ( 𝐴  ⊆  𝑍  ∧  𝑍  ⊆  𝐴 )  →  𝑍  ∈  Fin ) ) | 
						
							| 15 | 4 14 | mpand | ⊢ ( 𝜑  →  ( 𝑍  ⊆  𝐴  →  𝑍  ∈  Fin ) ) | 
						
							| 16 | 10 15 | biimtrrid | ⊢ ( 𝜑  →  ( ( 𝑍  ∖  𝐴 )  =  ∅  →  𝑍  ∈  Fin ) ) | 
						
							| 17 | 9 16 | mtod | ⊢ ( 𝜑  →  ¬  ( 𝑍  ∖  𝐴 )  =  ∅ ) | 
						
							| 18 |  | neq0 | ⊢ ( ¬  ( 𝑍  ∖  𝐴 )  =  ∅  ↔  ∃ 𝑥 𝑥  ∈  ( 𝑍  ∖  𝐴 ) ) | 
						
							| 19 | 17 18 | sylib | ⊢ ( 𝜑  →  ∃ 𝑥 𝑥  ∈  ( 𝑍  ∖  𝐴 ) ) | 
						
							| 20 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  →  𝐴  ∈  Fin ) | 
						
							| 21 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  →  𝐴  ⊆  𝑍 ) | 
						
							| 22 | 21 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  ∧  𝑘  ∈  𝐴 )  →  𝑘  ∈  𝑍 ) | 
						
							| 23 | 6 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  ∧  𝑘  ∈  𝑍 )  →  𝐵  ∈  ℝ+ ) | 
						
							| 24 | 23 | rpred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  ∧  𝑘  ∈  𝑍 )  →  𝐵  ∈  ℝ ) | 
						
							| 25 | 22 24 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 26 | 20 25 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  →  Σ 𝑘  ∈  𝐴 𝐵  ∈  ℝ ) | 
						
							| 27 |  | snfi | ⊢ { 𝑥 }  ∈  Fin | 
						
							| 28 |  | unfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  { 𝑥 }  ∈  Fin )  →  ( 𝐴  ∪  { 𝑥 } )  ∈  Fin ) | 
						
							| 29 | 20 27 28 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  →  ( 𝐴  ∪  { 𝑥 } )  ∈  Fin ) | 
						
							| 30 |  | eldifi | ⊢ ( 𝑥  ∈  ( 𝑍  ∖  𝐴 )  →  𝑥  ∈  𝑍 ) | 
						
							| 31 | 30 | snssd | ⊢ ( 𝑥  ∈  ( 𝑍  ∖  𝐴 )  →  { 𝑥 }  ⊆  𝑍 ) | 
						
							| 32 | 4 31 | anim12i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  →  ( 𝐴  ⊆  𝑍  ∧  { 𝑥 }  ⊆  𝑍 ) ) | 
						
							| 33 |  | unss | ⊢ ( ( 𝐴  ⊆  𝑍  ∧  { 𝑥 }  ⊆  𝑍 )  ↔  ( 𝐴  ∪  { 𝑥 } )  ⊆  𝑍 ) | 
						
							| 34 | 32 33 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  →  ( 𝐴  ∪  { 𝑥 } )  ⊆  𝑍 ) | 
						
							| 35 | 34 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  ∧  𝑘  ∈  ( 𝐴  ∪  { 𝑥 } ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 36 | 35 24 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  ∧  𝑘  ∈  ( 𝐴  ∪  { 𝑥 } ) )  →  𝐵  ∈  ℝ ) | 
						
							| 37 | 29 36 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  →  Σ 𝑘  ∈  ( 𝐴  ∪  { 𝑥 } ) 𝐵  ∈  ℝ ) | 
						
							| 38 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 39 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  𝐵 ) | 
						
							| 40 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  →  seq 𝑀 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 41 | 1 38 39 24 40 | isumrecl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  →  Σ 𝑘  ∈  𝑍 𝐵  ∈  ℝ ) | 
						
							| 42 | 27 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  →  { 𝑥 }  ∈  Fin ) | 
						
							| 43 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 44 | 43 | snnz | ⊢ { 𝑥 }  ≠  ∅ | 
						
							| 45 | 44 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  →  { 𝑥 }  ≠  ∅ ) | 
						
							| 46 | 31 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  →  { 𝑥 }  ⊆  𝑍 ) | 
						
							| 47 | 46 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  ∧  𝑘  ∈  { 𝑥 } )  →  𝑘  ∈  𝑍 ) | 
						
							| 48 | 47 23 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  ∧  𝑘  ∈  { 𝑥 } )  →  𝐵  ∈  ℝ+ ) | 
						
							| 49 | 42 45 48 | fsumrpcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  →  Σ 𝑘  ∈  { 𝑥 } 𝐵  ∈  ℝ+ ) | 
						
							| 50 | 26 49 | ltaddrpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  →  Σ 𝑘  ∈  𝐴 𝐵  <  ( Σ 𝑘  ∈  𝐴 𝐵  +  Σ 𝑘  ∈  { 𝑥 } 𝐵 ) ) | 
						
							| 51 |  | eldifn | ⊢ ( 𝑥  ∈  ( 𝑍  ∖  𝐴 )  →  ¬  𝑥  ∈  𝐴 ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  →  ¬  𝑥  ∈  𝐴 ) | 
						
							| 53 |  | disjsn | ⊢ ( ( 𝐴  ∩  { 𝑥 } )  =  ∅  ↔  ¬  𝑥  ∈  𝐴 ) | 
						
							| 54 | 52 53 | sylibr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  →  ( 𝐴  ∩  { 𝑥 } )  =  ∅ ) | 
						
							| 55 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  →  ( 𝐴  ∪  { 𝑥 } )  =  ( 𝐴  ∪  { 𝑥 } ) ) | 
						
							| 56 | 23 | rpcnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  ∧  𝑘  ∈  𝑍 )  →  𝐵  ∈  ℂ ) | 
						
							| 57 | 35 56 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  ∧  𝑘  ∈  ( 𝐴  ∪  { 𝑥 } ) )  →  𝐵  ∈  ℂ ) | 
						
							| 58 | 54 55 29 57 | fsumsplit | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  →  Σ 𝑘  ∈  ( 𝐴  ∪  { 𝑥 } ) 𝐵  =  ( Σ 𝑘  ∈  𝐴 𝐵  +  Σ 𝑘  ∈  { 𝑥 } 𝐵 ) ) | 
						
							| 59 | 50 58 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  →  Σ 𝑘  ∈  𝐴 𝐵  <  Σ 𝑘  ∈  ( 𝐴  ∪  { 𝑥 } ) 𝐵 ) | 
						
							| 60 | 23 | rpge0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  ∧  𝑘  ∈  𝑍 )  →  0  ≤  𝐵 ) | 
						
							| 61 | 1 38 29 34 39 24 60 40 | isumless | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  →  Σ 𝑘  ∈  ( 𝐴  ∪  { 𝑥 } ) 𝐵  ≤  Σ 𝑘  ∈  𝑍 𝐵 ) | 
						
							| 62 | 26 37 41 59 61 | ltletrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑍  ∖  𝐴 ) )  →  Σ 𝑘  ∈  𝐴 𝐵  <  Σ 𝑘  ∈  𝑍 𝐵 ) | 
						
							| 63 | 19 62 | exlimddv | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐴 𝐵  <  Σ 𝑘  ∈  𝑍 𝐵 ) |