| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isumcl.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | isumcl.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | isumcl.3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  𝐴 ) | 
						
							| 4 |  | isumcl.4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐴  ∈  ℂ ) | 
						
							| 5 |  | isumcl.5 | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 6 |  | summulc.6 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 7 | 1 2 3 4 5 6 | isummulc2 | ⊢ ( 𝜑  →  ( 𝐵  ·  Σ 𝑘  ∈  𝑍 𝐴 )  =  Σ 𝑘  ∈  𝑍 ( 𝐵  ·  𝐴 ) ) | 
						
							| 8 | 1 2 3 4 5 | isumcl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝑍 𝐴  ∈  ℂ ) | 
						
							| 9 | 8 6 | mulcomd | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  𝑍 𝐴  ·  𝐵 )  =  ( 𝐵  ·  Σ 𝑘  ∈  𝑍 𝐴 ) ) | 
						
							| 10 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐵  ∈  ℂ ) | 
						
							| 11 | 4 10 | mulcomd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐴  ·  𝐵 )  =  ( 𝐵  ·  𝐴 ) ) | 
						
							| 12 | 11 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝑍 ( 𝐴  ·  𝐵 )  =  Σ 𝑘  ∈  𝑍 ( 𝐵  ·  𝐴 ) ) | 
						
							| 13 | 7 9 12 | 3eqtr4d | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  𝑍 𝐴  ·  𝐵 )  =  Σ 𝑘  ∈  𝑍 ( 𝐴  ·  𝐵 ) ) |