Step |
Hyp |
Ref |
Expression |
1 |
|
isumcl.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
isumcl.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
3 |
|
isumcl.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
4 |
|
isumcl.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
5 |
|
isumcl.5 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
6 |
|
summulc.6 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
7 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑚 ) ) |
8 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
9 |
8 4
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐵 · 𝐴 ) ∈ ℂ ) |
10 |
9
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) : 𝑍 ⟶ ℂ ) |
11 |
10
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑚 ) ∈ ℂ ) |
12 |
1 2 3 4 5
|
isumclim2 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ Σ 𝑘 ∈ 𝑍 𝐴 ) |
13 |
3 4
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
14 |
13
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
15 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) ) |
16 |
15
|
eleq1d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) ) |
17 |
16
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
18 |
14 17
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝑍 ) |
20 |
|
ovex |
⊢ ( 𝐵 · 𝐴 ) ∈ V |
21 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) |
22 |
21
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ 𝑍 ∧ ( 𝐵 · 𝐴 ) ∈ V ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑘 ) = ( 𝐵 · 𝐴 ) ) |
23 |
19 20 22
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑘 ) = ( 𝐵 · 𝐴 ) ) |
24 |
3
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐵 · ( 𝐹 ‘ 𝑘 ) ) = ( 𝐵 · 𝐴 ) ) |
25 |
23 24
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑘 ) = ( 𝐵 · ( 𝐹 ‘ 𝑘 ) ) ) |
26 |
25
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑘 ) = ( 𝐵 · ( 𝐹 ‘ 𝑘 ) ) ) |
27 |
|
nffvmpt1 |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑚 ) |
28 |
27
|
nfeq1 |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑚 ) = ( 𝐵 · ( 𝐹 ‘ 𝑚 ) ) |
29 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑚 ) ) |
30 |
15
|
oveq2d |
⊢ ( 𝑘 = 𝑚 → ( 𝐵 · ( 𝐹 ‘ 𝑘 ) ) = ( 𝐵 · ( 𝐹 ‘ 𝑚 ) ) ) |
31 |
29 30
|
eqeq12d |
⊢ ( 𝑘 = 𝑚 → ( ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑘 ) = ( 𝐵 · ( 𝐹 ‘ 𝑘 ) ) ↔ ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑚 ) = ( 𝐵 · ( 𝐹 ‘ 𝑚 ) ) ) ) |
32 |
28 31
|
rspc |
⊢ ( 𝑚 ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑘 ) = ( 𝐵 · ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑚 ) = ( 𝐵 · ( 𝐹 ‘ 𝑚 ) ) ) ) |
33 |
26 32
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑚 ) = ( 𝐵 · ( 𝐹 ‘ 𝑚 ) ) ) |
34 |
1 2 6 12 18 33
|
isermulc2 |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ) ⇝ ( 𝐵 · Σ 𝑘 ∈ 𝑍 𝐴 ) ) |
35 |
1 2 7 11 34
|
isumclim |
⊢ ( 𝜑 → Σ 𝑚 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑚 ) = ( 𝐵 · Σ 𝑘 ∈ 𝑍 𝐴 ) ) |
36 |
|
sumfc |
⊢ Σ 𝑚 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ ( 𝐵 · 𝐴 ) ) ‘ 𝑚 ) = Σ 𝑘 ∈ 𝑍 ( 𝐵 · 𝐴 ) |
37 |
35 36
|
eqtr3di |
⊢ ( 𝜑 → ( 𝐵 · Σ 𝑘 ∈ 𝑍 𝐴 ) = Σ 𝑘 ∈ 𝑍 ( 𝐵 · 𝐴 ) ) |