| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isumcl.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | isumcl.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | isumcl.3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  𝐴 ) | 
						
							| 4 |  | isumcl.4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐴  ∈  ℂ ) | 
						
							| 5 |  | isumcl.5 | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 6 |  | summulc.6 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 7 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( ( 𝑘  ∈  𝑍  ↦  ( 𝐵  ·  𝐴 ) ) ‘ 𝑚 )  =  ( ( 𝑘  ∈  𝑍  ↦  ( 𝐵  ·  𝐴 ) ) ‘ 𝑚 ) ) | 
						
							| 8 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐵  ∈  ℂ ) | 
						
							| 9 | 8 4 | mulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐵  ·  𝐴 )  ∈  ℂ ) | 
						
							| 10 | 9 | fmpttd | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝑍  ↦  ( 𝐵  ·  𝐴 ) ) : 𝑍 ⟶ ℂ ) | 
						
							| 11 | 10 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( ( 𝑘  ∈  𝑍  ↦  ( 𝐵  ·  𝐴 ) ) ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 12 | 1 2 3 4 5 | isumclim2 | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 )  ⇝  Σ 𝑘  ∈  𝑍 𝐴 ) | 
						
							| 13 | 3 4 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 14 | 13 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝑍 ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑘  =  𝑚  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 16 | 15 | eleq1d | ⊢ ( 𝑘  =  𝑚  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ↔  ( 𝐹 ‘ 𝑚 )  ∈  ℂ ) ) | 
						
							| 17 | 16 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  𝑍 ( 𝐹 ‘ 𝑘 )  ∈  ℂ  ∧  𝑚  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 18 | 14 17 | sylan | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝑘  ∈  𝑍 ) | 
						
							| 20 |  | ovex | ⊢ ( 𝐵  ·  𝐴 )  ∈  V | 
						
							| 21 |  | eqid | ⊢ ( 𝑘  ∈  𝑍  ↦  ( 𝐵  ·  𝐴 ) )  =  ( 𝑘  ∈  𝑍  ↦  ( 𝐵  ·  𝐴 ) ) | 
						
							| 22 | 21 | fvmpt2 | ⊢ ( ( 𝑘  ∈  𝑍  ∧  ( 𝐵  ·  𝐴 )  ∈  V )  →  ( ( 𝑘  ∈  𝑍  ↦  ( 𝐵  ·  𝐴 ) ) ‘ 𝑘 )  =  ( 𝐵  ·  𝐴 ) ) | 
						
							| 23 | 19 20 22 | sylancl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑘  ∈  𝑍  ↦  ( 𝐵  ·  𝐴 ) ) ‘ 𝑘 )  =  ( 𝐵  ·  𝐴 ) ) | 
						
							| 24 | 3 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐵  ·  ( 𝐹 ‘ 𝑘 ) )  =  ( 𝐵  ·  𝐴 ) ) | 
						
							| 25 | 23 24 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑘  ∈  𝑍  ↦  ( 𝐵  ·  𝐴 ) ) ‘ 𝑘 )  =  ( 𝐵  ·  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 26 | 25 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝑍 ( ( 𝑘  ∈  𝑍  ↦  ( 𝐵  ·  𝐴 ) ) ‘ 𝑘 )  =  ( 𝐵  ·  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 27 |  | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘  ∈  𝑍  ↦  ( 𝐵  ·  𝐴 ) ) ‘ 𝑚 ) | 
						
							| 28 | 27 | nfeq1 | ⊢ Ⅎ 𝑘 ( ( 𝑘  ∈  𝑍  ↦  ( 𝐵  ·  𝐴 ) ) ‘ 𝑚 )  =  ( 𝐵  ·  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 29 |  | fveq2 | ⊢ ( 𝑘  =  𝑚  →  ( ( 𝑘  ∈  𝑍  ↦  ( 𝐵  ·  𝐴 ) ) ‘ 𝑘 )  =  ( ( 𝑘  ∈  𝑍  ↦  ( 𝐵  ·  𝐴 ) ) ‘ 𝑚 ) ) | 
						
							| 30 | 15 | oveq2d | ⊢ ( 𝑘  =  𝑚  →  ( 𝐵  ·  ( 𝐹 ‘ 𝑘 ) )  =  ( 𝐵  ·  ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 31 | 29 30 | eqeq12d | ⊢ ( 𝑘  =  𝑚  →  ( ( ( 𝑘  ∈  𝑍  ↦  ( 𝐵  ·  𝐴 ) ) ‘ 𝑘 )  =  ( 𝐵  ·  ( 𝐹 ‘ 𝑘 ) )  ↔  ( ( 𝑘  ∈  𝑍  ↦  ( 𝐵  ·  𝐴 ) ) ‘ 𝑚 )  =  ( 𝐵  ·  ( 𝐹 ‘ 𝑚 ) ) ) ) | 
						
							| 32 | 28 31 | rspc | ⊢ ( 𝑚  ∈  𝑍  →  ( ∀ 𝑘  ∈  𝑍 ( ( 𝑘  ∈  𝑍  ↦  ( 𝐵  ·  𝐴 ) ) ‘ 𝑘 )  =  ( 𝐵  ·  ( 𝐹 ‘ 𝑘 ) )  →  ( ( 𝑘  ∈  𝑍  ↦  ( 𝐵  ·  𝐴 ) ) ‘ 𝑚 )  =  ( 𝐵  ·  ( 𝐹 ‘ 𝑚 ) ) ) ) | 
						
							| 33 | 26 32 | mpan9 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ( ( 𝑘  ∈  𝑍  ↦  ( 𝐵  ·  𝐴 ) ) ‘ 𝑚 )  =  ( 𝐵  ·  ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 34 | 1 2 6 12 18 33 | isermulc2 | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  ( 𝑘  ∈  𝑍  ↦  ( 𝐵  ·  𝐴 ) ) )  ⇝  ( 𝐵  ·  Σ 𝑘  ∈  𝑍 𝐴 ) ) | 
						
							| 35 | 1 2 7 11 34 | isumclim | ⊢ ( 𝜑  →  Σ 𝑚  ∈  𝑍 ( ( 𝑘  ∈  𝑍  ↦  ( 𝐵  ·  𝐴 ) ) ‘ 𝑚 )  =  ( 𝐵  ·  Σ 𝑘  ∈  𝑍 𝐴 ) ) | 
						
							| 36 |  | sumfc | ⊢ Σ 𝑚  ∈  𝑍 ( ( 𝑘  ∈  𝑍  ↦  ( 𝐵  ·  𝐴 ) ) ‘ 𝑚 )  =  Σ 𝑘  ∈  𝑍 ( 𝐵  ·  𝐴 ) | 
						
							| 37 | 35 36 | eqtr3di | ⊢ ( 𝜑  →  ( 𝐵  ·  Σ 𝑘  ∈  𝑍 𝐴 )  =  Σ 𝑘  ∈  𝑍 ( 𝐵  ·  𝐴 ) ) |