| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isumneg.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
isumneg.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
isumneg.3 |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ ) |
| 4 |
|
isumneg.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
| 5 |
|
isumneg.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
| 6 |
|
isumneg.6 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 7 |
5
|
mulm1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( - 1 · 𝐴 ) = - 𝐴 ) |
| 8 |
7
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → - 𝐴 = ( - 1 · 𝐴 ) ) |
| 9 |
8
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 - 𝐴 = Σ 𝑘 ∈ 𝑍 ( - 1 · 𝐴 ) ) |
| 10 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 11 |
10
|
negcld |
⊢ ( 𝜑 → - 1 ∈ ℂ ) |
| 12 |
1 2 4 5 6 11
|
isummulc2 |
⊢ ( 𝜑 → ( - 1 · Σ 𝑘 ∈ 𝑍 𝐴 ) = Σ 𝑘 ∈ 𝑍 ( - 1 · 𝐴 ) ) |
| 13 |
3
|
mulm1d |
⊢ ( 𝜑 → ( - 1 · Σ 𝑘 ∈ 𝑍 𝐴 ) = - Σ 𝑘 ∈ 𝑍 𝐴 ) |
| 14 |
9 12 13
|
3eqtr2d |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 - 𝐴 = - Σ 𝑘 ∈ 𝑍 𝐴 ) |