| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isumnn0nn.1 | ⊢ ( 𝑘  =  0  →  𝐴  =  𝐵 ) | 
						
							| 2 |  | isumnn0nn.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑘 )  =  𝐴 ) | 
						
							| 3 |  | isumnn0nn.3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝐴  ∈  ℂ ) | 
						
							| 4 |  | isumnn0nn.4 | ⊢ ( 𝜑  →  seq 0 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 5 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 6 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 7 | 5 6 2 3 4 | isum1p | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ℕ0 𝐴  =  ( ( 𝐹 ‘ 0 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 0  +  1 ) ) 𝐴 ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑘  =  0  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 0 ) ) | 
						
							| 9 | 8 1 | eqeq12d | ⊢ ( 𝑘  =  0  →  ( ( 𝐹 ‘ 𝑘 )  =  𝐴  ↔  ( 𝐹 ‘ 0 )  =  𝐵 ) ) | 
						
							| 10 | 2 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℕ0 ( 𝐹 ‘ 𝑘 )  =  𝐴 ) | 
						
							| 11 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  0  ∈  ℕ0 ) | 
						
							| 13 | 9 10 12 | rspcdva | ⊢ ( 𝜑  →  ( 𝐹 ‘ 0 )  =  𝐵 ) | 
						
							| 14 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 15 | 14 | fveq2i | ⊢ ( ℤ≥ ‘ ( 0  +  1 ) )  =  ( ℤ≥ ‘ 1 ) | 
						
							| 16 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 17 | 15 16 | eqtr4i | ⊢ ( ℤ≥ ‘ ( 0  +  1 ) )  =  ℕ | 
						
							| 18 | 17 | sumeq1i | ⊢ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 0  +  1 ) ) 𝐴  =  Σ 𝑘  ∈  ℕ 𝐴 | 
						
							| 19 | 18 | a1i | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 0  +  1 ) ) 𝐴  =  Σ 𝑘  ∈  ℕ 𝐴 ) | 
						
							| 20 | 13 19 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 0 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 0  +  1 ) ) 𝐴 )  =  ( 𝐵  +  Σ 𝑘  ∈  ℕ 𝐴 ) ) | 
						
							| 21 | 7 20 | eqtrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ℕ0 𝐴  =  ( 𝐵  +  Σ 𝑘  ∈  ℕ 𝐴 ) ) |