Step |
Hyp |
Ref |
Expression |
1 |
|
isumnn0nn.1 |
⊢ ( 𝑘 = 0 → 𝐴 = 𝐵 ) |
2 |
|
isumnn0nn.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
3 |
|
isumnn0nn.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
4 |
|
isumnn0nn.4 |
⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
5 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
6 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
7 |
5 6 2 3 4
|
isum1p |
⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ0 𝐴 = ( ( 𝐹 ‘ 0 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) 𝐴 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 0 ) ) |
9 |
8 1
|
eqeq12d |
⊢ ( 𝑘 = 0 → ( ( 𝐹 ‘ 𝑘 ) = 𝐴 ↔ ( 𝐹 ‘ 0 ) = 𝐵 ) ) |
10 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
11 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
12 |
11
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
13 |
9 10 12
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 𝐵 ) |
14 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
15 |
14
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 0 + 1 ) ) = ( ℤ≥ ‘ 1 ) |
16 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
17 |
15 16
|
eqtr4i |
⊢ ( ℤ≥ ‘ ( 0 + 1 ) ) = ℕ |
18 |
17
|
sumeq1i |
⊢ Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) 𝐴 = Σ 𝑘 ∈ ℕ 𝐴 |
19 |
18
|
a1i |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) 𝐴 = Σ 𝑘 ∈ ℕ 𝐴 ) |
20 |
13 19
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 0 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) 𝐴 ) = ( 𝐵 + Σ 𝑘 ∈ ℕ 𝐴 ) ) |
21 |
7 20
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ0 𝐴 = ( 𝐵 + Σ 𝑘 ∈ ℕ 𝐴 ) ) |