Metamath Proof Explorer


Theorem isumrecl

Description: The sum of a converging infinite real series is a real number. (Contributed by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses isumrecl.1 𝑍 = ( ℤ𝑀 )
isumrecl.2 ( 𝜑𝑀 ∈ ℤ )
isumrecl.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
isumrecl.4 ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℝ )
isumrecl.5 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ )
Assertion isumrecl ( 𝜑 → Σ 𝑘𝑍 𝐴 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 isumrecl.1 𝑍 = ( ℤ𝑀 )
2 isumrecl.2 ( 𝜑𝑀 ∈ ℤ )
3 isumrecl.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐴 )
4 isumrecl.4 ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℝ )
5 isumrecl.5 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ )
6 4 recnd ( ( 𝜑𝑘𝑍 ) → 𝐴 ∈ ℂ )
7 1 2 3 6 5 isumclim2 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ Σ 𝑘𝑍 𝐴 )
8 3 4 eqeltrd ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
9 1 2 8 serfre ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ )
10 9 ffvelrnda ( ( 𝜑𝑗𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℝ )
11 1 2 7 10 climrecl ( 𝜑 → Σ 𝑘𝑍 𝐴 ∈ ℝ )