Step |
Hyp |
Ref |
Expression |
1 |
|
isumrpcl.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
isumrpcl.2 |
⊢ 𝑊 = ( ℤ≥ ‘ 𝑁 ) |
3 |
|
isumrpcl.3 |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
4 |
|
isumrpcl.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
5 |
|
isumrpcl.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ+ ) |
6 |
|
isumrpcl.6 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
7 |
3 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
8 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
10 |
|
uzss |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
11 |
7 10
|
syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
12 |
11 2 1
|
3sstr4g |
⊢ ( 𝜑 → 𝑊 ⊆ 𝑍 ) |
13 |
12
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝑘 ∈ 𝑍 ) |
14 |
13 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
15 |
5
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) |
16 |
13 15
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝐴 ∈ ℝ ) |
17 |
4 5
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ+ ) |
18 |
17
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
19 |
1 3 18
|
iserex |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) ) |
20 |
6 19
|
mpbid |
⊢ ( 𝜑 → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
21 |
2 9 14 16 20
|
isumrecl |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑊 𝐴 ∈ ℝ ) |
22 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑁 ) ) |
23 |
22
|
eleq1d |
⊢ ( 𝑘 = 𝑁 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ+ ↔ ( 𝐹 ‘ 𝑁 ) ∈ ℝ+ ) ) |
24 |
17
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℝ+ ) |
25 |
23 24 3
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ+ ) |
26 |
|
seq1 |
⊢ ( 𝑁 ∈ ℤ → ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ) |
27 |
9 26
|
syl |
⊢ ( 𝜑 → ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐹 ‘ 𝑁 ) ) |
28 |
|
uzid |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
29 |
9 28
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
30 |
29 2
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑁 ∈ 𝑊 ) |
31 |
16
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝐴 ∈ ℂ ) |
32 |
2 9 14 31 20
|
isumclim2 |
⊢ ( 𝜑 → seq 𝑁 ( + , 𝐹 ) ⇝ Σ 𝑘 ∈ 𝑊 𝐴 ) |
33 |
12
|
sseld |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑊 → 𝑚 ∈ 𝑍 ) ) |
34 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) ) |
35 |
34
|
eleq1d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℝ+ ↔ ( 𝐹 ‘ 𝑚 ) ∈ ℝ+ ) ) |
36 |
35
|
rspcv |
⊢ ( 𝑚 ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℝ+ → ( 𝐹 ‘ 𝑚 ) ∈ ℝ+ ) ) |
37 |
33 24 36
|
syl6ci |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑊 → ( 𝐹 ‘ 𝑚 ) ∈ ℝ+ ) ) |
38 |
37
|
imp |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℝ+ ) |
39 |
38
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℝ ) |
40 |
38
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → 0 ≤ ( 𝐹 ‘ 𝑚 ) ) |
41 |
2 30 32 39 40
|
climserle |
⊢ ( 𝜑 → ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑁 ) ≤ Σ 𝑘 ∈ 𝑊 𝐴 ) |
42 |
27 41
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ Σ 𝑘 ∈ 𝑊 𝐴 ) |
43 |
21 25 42
|
rpgecld |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑊 𝐴 ∈ ℝ+ ) |