Step |
Hyp |
Ref |
Expression |
1 |
|
isumshft.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
isumshft.2 |
⊢ 𝑊 = ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) |
3 |
|
isumshft.3 |
⊢ ( 𝑗 = ( 𝐾 + 𝑘 ) → 𝐴 = 𝐵 ) |
4 |
|
isumshft.4 |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
5 |
|
isumshft.5 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
6 |
|
isumshft.6 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → 𝐴 ∈ ℂ ) |
7 |
5 4
|
zaddcld |
⊢ ( 𝜑 → ( 𝑀 + 𝐾 ) ∈ ℤ ) |
8 |
2
|
eleq2i |
⊢ ( 𝑚 ∈ 𝑊 ↔ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
9 |
4
|
zcnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
10 |
|
eluzelcn |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) → 𝑚 ∈ ℂ ) |
11 |
10 2
|
eleq2s |
⊢ ( 𝑚 ∈ 𝑊 → 𝑚 ∈ ℂ ) |
12 |
1
|
fvexi |
⊢ 𝑍 ∈ V |
13 |
12
|
mptex |
⊢ ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ∈ V |
14 |
13
|
shftval |
⊢ ( ( 𝐾 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) shift 𝐾 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ ( 𝑚 − 𝐾 ) ) ) |
15 |
9 11 14
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) shift 𝐾 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ ( 𝑚 − 𝐾 ) ) ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝑍 ) |
17 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) = ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) |
18 |
17
|
fvmpt2i |
⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) = ( I ‘ 𝐵 ) ) |
19 |
16 18
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) = ( I ‘ 𝐵 ) ) |
20 |
|
eluzelcn |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℂ ) |
21 |
20 1
|
eleq2s |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℂ ) |
22 |
|
addcom |
⊢ ( ( 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐾 + 𝑘 ) = ( 𝑘 + 𝐾 ) ) |
23 |
9 21 22
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐾 + 𝑘 ) = ( 𝑘 + 𝐾 ) ) |
24 |
|
id |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ 𝑍 ) |
25 |
24 1
|
eleqtrdi |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
26 |
|
eluzadd |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℤ ) → ( 𝑘 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
27 |
25 4 26
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑘 + 𝐾 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
28 |
23 27
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐾 + 𝑘 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
29 |
28 2
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐾 + 𝑘 ) ∈ 𝑊 ) |
30 |
|
eqid |
⊢ ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) = ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) |
31 |
3 30
|
fvmpti |
⊢ ( ( 𝐾 + 𝑘 ) ∈ 𝑊 → ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑘 ) ) = ( I ‘ 𝐵 ) ) |
32 |
29 31
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑘 ) ) = ( I ‘ 𝐵 ) ) |
33 |
19 32
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑘 ) ) ) |
34 |
33
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑘 ) ) ) |
35 |
|
nffvmpt1 |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) |
36 |
35
|
nfeq1 |
⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑛 ) ) |
37 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) |
38 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐾 + 𝑘 ) = ( 𝐾 + 𝑛 ) ) |
39 |
38
|
fveq2d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑘 ) ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑛 ) ) ) |
40 |
37 39
|
eqeq12d |
⊢ ( 𝑘 = 𝑛 → ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑘 ) ) ↔ ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑛 ) ) ) ) |
41 |
36 40
|
rspc |
⊢ ( 𝑛 ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑘 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑘 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑛 ) ) ) ) |
42 |
34 41
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑛 ) ) ) |
43 |
42
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑛 ) ) ) |
44 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → 𝑀 ∈ ℤ ) |
45 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → 𝐾 ∈ ℤ ) |
46 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → 𝑚 ∈ 𝑊 ) |
47 |
46 2
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → 𝑚 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) |
48 |
|
eluzsub |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) → ( 𝑚 − 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
49 |
44 45 47 48
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → ( 𝑚 − 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
50 |
49 1
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → ( 𝑚 − 𝐾 ) ∈ 𝑍 ) |
51 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑚 − 𝐾 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ ( 𝑚 − 𝐾 ) ) ) |
52 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑚 − 𝐾 ) → ( 𝐾 + 𝑛 ) = ( 𝐾 + ( 𝑚 − 𝐾 ) ) ) |
53 |
52
|
fveq2d |
⊢ ( 𝑛 = ( 𝑚 − 𝐾 ) → ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑛 ) ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + ( 𝑚 − 𝐾 ) ) ) ) |
54 |
51 53
|
eqeq12d |
⊢ ( 𝑛 = ( 𝑚 − 𝐾 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑛 ) ) ↔ ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ ( 𝑚 − 𝐾 ) ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + ( 𝑚 − 𝐾 ) ) ) ) ) |
55 |
54
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑛 ) ) ∧ ( 𝑚 − 𝐾 ) ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ ( 𝑚 − 𝐾 ) ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + ( 𝑚 − 𝐾 ) ) ) ) |
56 |
43 50 55
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ ( 𝑚 − 𝐾 ) ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + ( 𝑚 − 𝐾 ) ) ) ) |
57 |
|
pncan3 |
⊢ ( ( 𝐾 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 𝐾 + ( 𝑚 − 𝐾 ) ) = 𝑚 ) |
58 |
9 11 57
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → ( 𝐾 + ( 𝑚 − 𝐾 ) ) = 𝑚 ) |
59 |
58
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + ( 𝑚 − 𝐾 ) ) ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ 𝑚 ) ) |
60 |
15 56 59
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) shift 𝐾 ) ‘ 𝑚 ) ) |
61 |
8 60
|
sylan2br |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑀 + 𝐾 ) ) ) → ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) shift 𝐾 ) ‘ 𝑚 ) ) |
62 |
7 61
|
seqfeq |
⊢ ( 𝜑 → seq ( 𝑀 + 𝐾 ) ( + , ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ) = seq ( 𝑀 + 𝐾 ) ( + , ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) shift 𝐾 ) ) ) |
63 |
62
|
breq1d |
⊢ ( 𝜑 → ( seq ( 𝑀 + 𝐾 ) ( + , ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ) ⇝ 𝑥 ↔ seq ( 𝑀 + 𝐾 ) ( + , ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) shift 𝐾 ) ) ⇝ 𝑥 ) ) |
64 |
13
|
isershft |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) ⇝ 𝑥 ↔ seq ( 𝑀 + 𝐾 ) ( + , ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) shift 𝐾 ) ) ⇝ 𝑥 ) ) |
65 |
5 4 64
|
syl2anc |
⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) ⇝ 𝑥 ↔ seq ( 𝑀 + 𝐾 ) ( + , ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) shift 𝐾 ) ) ⇝ 𝑥 ) ) |
66 |
63 65
|
bitr4d |
⊢ ( 𝜑 → ( seq ( 𝑀 + 𝐾 ) ( + , ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ) ⇝ 𝑥 ↔ seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) ⇝ 𝑥 ) ) |
67 |
66
|
iotabidv |
⊢ ( 𝜑 → ( ℩ 𝑥 seq ( 𝑀 + 𝐾 ) ( + , ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ) ⇝ 𝑥 ) = ( ℩ 𝑥 seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) ⇝ 𝑥 ) ) |
68 |
|
df-fv |
⊢ ( ⇝ ‘ seq ( 𝑀 + 𝐾 ) ( + , ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ) ) = ( ℩ 𝑥 seq ( 𝑀 + 𝐾 ) ( + , ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ) ⇝ 𝑥 ) |
69 |
|
df-fv |
⊢ ( ⇝ ‘ seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) ) = ( ℩ 𝑥 seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) ⇝ 𝑥 ) |
70 |
67 68 69
|
3eqtr4g |
⊢ ( 𝜑 → ( ⇝ ‘ seq ( 𝑀 + 𝐾 ) ( + , ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ) ) = ( ⇝ ‘ seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) ) ) |
71 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ 𝑚 ) ) |
72 |
6
|
fmpttd |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) : 𝑊 ⟶ ℂ ) |
73 |
72
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑊 ) → ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
74 |
2 7 71 73
|
isum |
⊢ ( 𝜑 → Σ 𝑚 ∈ 𝑊 ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ 𝑚 ) = ( ⇝ ‘ seq ( 𝑀 + 𝐾 ) ( + , ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ) ) ) |
75 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) |
76 |
29
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐾 + 𝑘 ) ∈ 𝑊 ) |
77 |
38
|
eleq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐾 + 𝑘 ) ∈ 𝑊 ↔ ( 𝐾 + 𝑛 ) ∈ 𝑊 ) ) |
78 |
77
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ 𝑍 ( 𝐾 + 𝑘 ) ∈ 𝑊 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐾 + 𝑛 ) ∈ 𝑊 ) |
79 |
76 78
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐾 + 𝑛 ) ∈ 𝑊 ) |
80 |
|
ffvelrn |
⊢ ( ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) : 𝑊 ⟶ ℂ ∧ ( 𝐾 + 𝑛 ) ∈ 𝑊 ) → ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑛 ) ) ∈ ℂ ) |
81 |
72 79 80
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ ( 𝐾 + 𝑛 ) ) ∈ ℂ ) |
82 |
42 81
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ∈ ℂ ) |
83 |
1 5 75 82
|
isum |
⊢ ( 𝜑 → Σ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = ( ⇝ ‘ seq 𝑀 ( + , ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ) ) ) |
84 |
70 74 83
|
3eqtr4d |
⊢ ( 𝜑 → Σ 𝑚 ∈ 𝑊 ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) ) |
85 |
|
sumfc |
⊢ Σ 𝑚 ∈ 𝑊 ( ( 𝑗 ∈ 𝑊 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑗 ∈ 𝑊 𝐴 |
86 |
|
sumfc |
⊢ Σ 𝑛 ∈ 𝑍 ( ( 𝑘 ∈ 𝑍 ↦ 𝐵 ) ‘ 𝑛 ) = Σ 𝑘 ∈ 𝑍 𝐵 |
87 |
84 85 86
|
3eqtr3g |
⊢ ( 𝜑 → Σ 𝑗 ∈ 𝑊 𝐴 = Σ 𝑘 ∈ 𝑍 𝐵 ) |