| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isumshft.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | isumshft.2 | ⊢ 𝑊  =  ( ℤ≥ ‘ ( 𝑀  +  𝐾 ) ) | 
						
							| 3 |  | isumshft.3 | ⊢ ( 𝑗  =  ( 𝐾  +  𝑘 )  →  𝐴  =  𝐵 ) | 
						
							| 4 |  | isumshft.4 | ⊢ ( 𝜑  →  𝐾  ∈  ℤ ) | 
						
							| 5 |  | isumshft.5 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 6 |  | isumshft.6 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑊 )  →  𝐴  ∈  ℂ ) | 
						
							| 7 | 5 4 | zaddcld | ⊢ ( 𝜑  →  ( 𝑀  +  𝐾 )  ∈  ℤ ) | 
						
							| 8 | 2 | eleq2i | ⊢ ( 𝑚  ∈  𝑊  ↔  𝑚  ∈  ( ℤ≥ ‘ ( 𝑀  +  𝐾 ) ) ) | 
						
							| 9 | 4 | zcnd | ⊢ ( 𝜑  →  𝐾  ∈  ℂ ) | 
						
							| 10 |  | eluzelcn | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ ( 𝑀  +  𝐾 ) )  →  𝑚  ∈  ℂ ) | 
						
							| 11 | 10 2 | eleq2s | ⊢ ( 𝑚  ∈  𝑊  →  𝑚  ∈  ℂ ) | 
						
							| 12 | 1 | fvexi | ⊢ 𝑍  ∈  V | 
						
							| 13 | 12 | mptex | ⊢ ( 𝑘  ∈  𝑍  ↦  𝐵 )  ∈  V | 
						
							| 14 | 13 | shftval | ⊢ ( ( 𝐾  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( ( 𝑘  ∈  𝑍  ↦  𝐵 )  shift  𝐾 ) ‘ 𝑚 )  =  ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ ( 𝑚  −  𝐾 ) ) ) | 
						
							| 15 | 9 11 14 | syl2an | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑊 )  →  ( ( ( 𝑘  ∈  𝑍  ↦  𝐵 )  shift  𝐾 ) ‘ 𝑚 )  =  ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ ( 𝑚  −  𝐾 ) ) ) | 
						
							| 16 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝑘  ∈  𝑍 ) | 
						
							| 17 |  | eqid | ⊢ ( 𝑘  ∈  𝑍  ↦  𝐵 )  =  ( 𝑘  ∈  𝑍  ↦  𝐵 ) | 
						
							| 18 | 17 | fvmpt2i | ⊢ ( 𝑘  ∈  𝑍  →  ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  =  (  I  ‘ 𝐵 ) ) | 
						
							| 19 | 16 18 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  =  (  I  ‘ 𝐵 ) ) | 
						
							| 20 |  | eluzelcn | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑘  ∈  ℂ ) | 
						
							| 21 | 20 1 | eleq2s | ⊢ ( 𝑘  ∈  𝑍  →  𝑘  ∈  ℂ ) | 
						
							| 22 |  | addcom | ⊢ ( ( 𝐾  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( 𝐾  +  𝑘 )  =  ( 𝑘  +  𝐾 ) ) | 
						
							| 23 | 9 21 22 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐾  +  𝑘 )  =  ( 𝑘  +  𝐾 ) ) | 
						
							| 24 |  | id | ⊢ ( 𝑘  ∈  𝑍  →  𝑘  ∈  𝑍 ) | 
						
							| 25 | 24 1 | eleqtrdi | ⊢ ( 𝑘  ∈  𝑍  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 26 |  | eluzadd | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝐾  ∈  ℤ )  →  ( 𝑘  +  𝐾 )  ∈  ( ℤ≥ ‘ ( 𝑀  +  𝐾 ) ) ) | 
						
							| 27 | 25 4 26 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝑘  +  𝐾 )  ∈  ( ℤ≥ ‘ ( 𝑀  +  𝐾 ) ) ) | 
						
							| 28 | 23 27 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐾  +  𝑘 )  ∈  ( ℤ≥ ‘ ( 𝑀  +  𝐾 ) ) ) | 
						
							| 29 | 28 2 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐾  +  𝑘 )  ∈  𝑊 ) | 
						
							| 30 |  | eqid | ⊢ ( 𝑗  ∈  𝑊  ↦  𝐴 )  =  ( 𝑗  ∈  𝑊  ↦  𝐴 ) | 
						
							| 31 | 3 30 | fvmpti | ⊢ ( ( 𝐾  +  𝑘 )  ∈  𝑊  →  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  𝑘 ) )  =  (  I  ‘ 𝐵 ) ) | 
						
							| 32 | 29 31 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  𝑘 ) )  =  (  I  ‘ 𝐵 ) ) | 
						
							| 33 | 19 32 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  =  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  𝑘 ) ) ) | 
						
							| 34 | 33 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝑍 ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  =  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  𝑘 ) ) ) | 
						
							| 35 |  | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 ) | 
						
							| 36 | 35 | nfeq1 | ⊢ Ⅎ 𝑘 ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  =  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  𝑛 ) ) | 
						
							| 37 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  =  ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 ) ) | 
						
							| 38 |  | oveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝐾  +  𝑘 )  =  ( 𝐾  +  𝑛 ) ) | 
						
							| 39 | 38 | fveq2d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  𝑘 ) )  =  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  𝑛 ) ) ) | 
						
							| 40 | 37 39 | eqeq12d | ⊢ ( 𝑘  =  𝑛  →  ( ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  =  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  𝑘 ) )  ↔  ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  =  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  𝑛 ) ) ) ) | 
						
							| 41 | 36 40 | rspc | ⊢ ( 𝑛  ∈  𝑍  →  ( ∀ 𝑘  ∈  𝑍 ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑘 )  =  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  𝑘 ) )  →  ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  =  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  𝑛 ) ) ) ) | 
						
							| 42 | 34 41 | mpan9 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  =  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  𝑛 ) ) ) | 
						
							| 43 | 42 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  𝑍 ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  =  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  𝑛 ) ) ) | 
						
							| 44 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑊 )  →  𝑀  ∈  ℤ ) | 
						
							| 45 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑊 )  →  𝐾  ∈  ℤ ) | 
						
							| 46 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑊 )  →  𝑚  ∈  𝑊 ) | 
						
							| 47 | 46 2 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑊 )  →  𝑚  ∈  ( ℤ≥ ‘ ( 𝑀  +  𝐾 ) ) ) | 
						
							| 48 |  | eluzsub | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐾  ∈  ℤ  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝑀  +  𝐾 ) ) )  →  ( 𝑚  −  𝐾 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 49 | 44 45 47 48 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑊 )  →  ( 𝑚  −  𝐾 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 50 | 49 1 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑊 )  →  ( 𝑚  −  𝐾 )  ∈  𝑍 ) | 
						
							| 51 |  | fveq2 | ⊢ ( 𝑛  =  ( 𝑚  −  𝐾 )  →  ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  =  ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ ( 𝑚  −  𝐾 ) ) ) | 
						
							| 52 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑚  −  𝐾 )  →  ( 𝐾  +  𝑛 )  =  ( 𝐾  +  ( 𝑚  −  𝐾 ) ) ) | 
						
							| 53 | 52 | fveq2d | ⊢ ( 𝑛  =  ( 𝑚  −  𝐾 )  →  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  𝑛 ) )  =  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  ( 𝑚  −  𝐾 ) ) ) ) | 
						
							| 54 | 51 53 | eqeq12d | ⊢ ( 𝑛  =  ( 𝑚  −  𝐾 )  →  ( ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  =  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  𝑛 ) )  ↔  ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ ( 𝑚  −  𝐾 ) )  =  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  ( 𝑚  −  𝐾 ) ) ) ) ) | 
						
							| 55 | 54 | rspccva | ⊢ ( ( ∀ 𝑛  ∈  𝑍 ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  =  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  𝑛 ) )  ∧  ( 𝑚  −  𝐾 )  ∈  𝑍 )  →  ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ ( 𝑚  −  𝐾 ) )  =  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  ( 𝑚  −  𝐾 ) ) ) ) | 
						
							| 56 | 43 50 55 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑊 )  →  ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ ( 𝑚  −  𝐾 ) )  =  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  ( 𝑚  −  𝐾 ) ) ) ) | 
						
							| 57 |  | pncan3 | ⊢ ( ( 𝐾  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( 𝐾  +  ( 𝑚  −  𝐾 ) )  =  𝑚 ) | 
						
							| 58 | 9 11 57 | syl2an | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑊 )  →  ( 𝐾  +  ( 𝑚  −  𝐾 ) )  =  𝑚 ) | 
						
							| 59 | 58 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑊 )  →  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  ( 𝑚  −  𝐾 ) ) )  =  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ 𝑚 ) ) | 
						
							| 60 | 15 56 59 | 3eqtrrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑊 )  →  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ 𝑚 )  =  ( ( ( 𝑘  ∈  𝑍  ↦  𝐵 )  shift  𝐾 ) ‘ 𝑚 ) ) | 
						
							| 61 | 8 60 | sylan2br | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝑀  +  𝐾 ) ) )  →  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ 𝑚 )  =  ( ( ( 𝑘  ∈  𝑍  ↦  𝐵 )  shift  𝐾 ) ‘ 𝑚 ) ) | 
						
							| 62 | 7 61 | seqfeq | ⊢ ( 𝜑  →  seq ( 𝑀  +  𝐾 ) (  +  ,  ( 𝑗  ∈  𝑊  ↦  𝐴 ) )  =  seq ( 𝑀  +  𝐾 ) (  +  ,  ( ( 𝑘  ∈  𝑍  ↦  𝐵 )  shift  𝐾 ) ) ) | 
						
							| 63 | 62 | breq1d | ⊢ ( 𝜑  →  ( seq ( 𝑀  +  𝐾 ) (  +  ,  ( 𝑗  ∈  𝑊  ↦  𝐴 ) )  ⇝  𝑥  ↔  seq ( 𝑀  +  𝐾 ) (  +  ,  ( ( 𝑘  ∈  𝑍  ↦  𝐵 )  shift  𝐾 ) )  ⇝  𝑥 ) ) | 
						
							| 64 | 13 | isershft | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐾  ∈  ℤ )  →  ( seq 𝑀 (  +  ,  ( 𝑘  ∈  𝑍  ↦  𝐵 ) )  ⇝  𝑥  ↔  seq ( 𝑀  +  𝐾 ) (  +  ,  ( ( 𝑘  ∈  𝑍  ↦  𝐵 )  shift  𝐾 ) )  ⇝  𝑥 ) ) | 
						
							| 65 | 5 4 64 | syl2anc | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  ( 𝑘  ∈  𝑍  ↦  𝐵 ) )  ⇝  𝑥  ↔  seq ( 𝑀  +  𝐾 ) (  +  ,  ( ( 𝑘  ∈  𝑍  ↦  𝐵 )  shift  𝐾 ) )  ⇝  𝑥 ) ) | 
						
							| 66 | 63 65 | bitr4d | ⊢ ( 𝜑  →  ( seq ( 𝑀  +  𝐾 ) (  +  ,  ( 𝑗  ∈  𝑊  ↦  𝐴 ) )  ⇝  𝑥  ↔  seq 𝑀 (  +  ,  ( 𝑘  ∈  𝑍  ↦  𝐵 ) )  ⇝  𝑥 ) ) | 
						
							| 67 | 66 | iotabidv | ⊢ ( 𝜑  →  ( ℩ 𝑥 seq ( 𝑀  +  𝐾 ) (  +  ,  ( 𝑗  ∈  𝑊  ↦  𝐴 ) )  ⇝  𝑥 )  =  ( ℩ 𝑥 seq 𝑀 (  +  ,  ( 𝑘  ∈  𝑍  ↦  𝐵 ) )  ⇝  𝑥 ) ) | 
						
							| 68 |  | df-fv | ⊢ (  ⇝  ‘ seq ( 𝑀  +  𝐾 ) (  +  ,  ( 𝑗  ∈  𝑊  ↦  𝐴 ) ) )  =  ( ℩ 𝑥 seq ( 𝑀  +  𝐾 ) (  +  ,  ( 𝑗  ∈  𝑊  ↦  𝐴 ) )  ⇝  𝑥 ) | 
						
							| 69 |  | df-fv | ⊢ (  ⇝  ‘ seq 𝑀 (  +  ,  ( 𝑘  ∈  𝑍  ↦  𝐵 ) ) )  =  ( ℩ 𝑥 seq 𝑀 (  +  ,  ( 𝑘  ∈  𝑍  ↦  𝐵 ) )  ⇝  𝑥 ) | 
						
							| 70 | 67 68 69 | 3eqtr4g | ⊢ ( 𝜑  →  (  ⇝  ‘ seq ( 𝑀  +  𝐾 ) (  +  ,  ( 𝑗  ∈  𝑊  ↦  𝐴 ) ) )  =  (  ⇝  ‘ seq 𝑀 (  +  ,  ( 𝑘  ∈  𝑍  ↦  𝐵 ) ) ) ) | 
						
							| 71 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑊 )  →  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ 𝑚 )  =  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ 𝑚 ) ) | 
						
							| 72 | 6 | fmpttd | ⊢ ( 𝜑  →  ( 𝑗  ∈  𝑊  ↦  𝐴 ) : 𝑊 ⟶ ℂ ) | 
						
							| 73 | 72 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑊 )  →  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 74 | 2 7 71 73 | isum | ⊢ ( 𝜑  →  Σ 𝑚  ∈  𝑊 ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ 𝑚 )  =  (  ⇝  ‘ seq ( 𝑀  +  𝐾 ) (  +  ,  ( 𝑗  ∈  𝑊  ↦  𝐴 ) ) ) ) | 
						
							| 75 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  =  ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 ) ) | 
						
							| 76 | 29 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝑍 ( 𝐾  +  𝑘 )  ∈  𝑊 ) | 
						
							| 77 | 38 | eleq1d | ⊢ ( 𝑘  =  𝑛  →  ( ( 𝐾  +  𝑘 )  ∈  𝑊  ↔  ( 𝐾  +  𝑛 )  ∈  𝑊 ) ) | 
						
							| 78 | 77 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  𝑍 ( 𝐾  +  𝑘 )  ∈  𝑊  ∧  𝑛  ∈  𝑍 )  →  ( 𝐾  +  𝑛 )  ∈  𝑊 ) | 
						
							| 79 | 76 78 | sylan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐾  +  𝑛 )  ∈  𝑊 ) | 
						
							| 80 |  | ffvelcdm | ⊢ ( ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) : 𝑊 ⟶ ℂ  ∧  ( 𝐾  +  𝑛 )  ∈  𝑊 )  →  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  𝑛 ) )  ∈  ℂ ) | 
						
							| 81 | 72 79 80 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ ( 𝐾  +  𝑛 ) )  ∈  ℂ ) | 
						
							| 82 | 42 81 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 83 | 1 5 75 82 | isum | ⊢ ( 𝜑  →  Σ 𝑛  ∈  𝑍 ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  =  (  ⇝  ‘ seq 𝑀 (  +  ,  ( 𝑘  ∈  𝑍  ↦  𝐵 ) ) ) ) | 
						
							| 84 | 70 74 83 | 3eqtr4d | ⊢ ( 𝜑  →  Σ 𝑚  ∈  𝑊 ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ 𝑚 )  =  Σ 𝑛  ∈  𝑍 ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 ) ) | 
						
							| 85 |  | sumfc | ⊢ Σ 𝑚  ∈  𝑊 ( ( 𝑗  ∈  𝑊  ↦  𝐴 ) ‘ 𝑚 )  =  Σ 𝑗  ∈  𝑊 𝐴 | 
						
							| 86 |  | sumfc | ⊢ Σ 𝑛  ∈  𝑍 ( ( 𝑘  ∈  𝑍  ↦  𝐵 ) ‘ 𝑛 )  =  Σ 𝑘  ∈  𝑍 𝐵 | 
						
							| 87 | 84 85 86 | 3eqtr3g | ⊢ ( 𝜑  →  Σ 𝑗  ∈  𝑊 𝐴  =  Σ 𝑘  ∈  𝑍 𝐵 ) |