Step |
Hyp |
Ref |
Expression |
1 |
|
isumsplit.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
isumsplit.2 |
⊢ 𝑊 = ( ℤ≥ ‘ 𝑁 ) |
3 |
|
isumsplit.3 |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
4 |
|
isumsplit.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
5 |
|
isumsplit.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
6 |
|
isumsplit.6 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
7 |
3 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
8 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
10 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
11 |
7 10
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
12 |
|
uzss |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
13 |
7 12
|
syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
14 |
13 2 1
|
3sstr4g |
⊢ ( 𝜑 → 𝑊 ⊆ 𝑍 ) |
15 |
14
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝑘 ∈ 𝑍 ) |
16 |
15 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
17 |
15 5
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝐴 ∈ ℂ ) |
18 |
4 5
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
19 |
1 3 18
|
iserex |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) ) |
20 |
6 19
|
mpbid |
⊢ ( 𝜑 → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
21 |
2 11 16 17 20
|
isumclim2 |
⊢ ( 𝜑 → seq 𝑁 ( + , 𝐹 ) ⇝ Σ 𝑘 ∈ 𝑊 𝐴 ) |
22 |
|
fzfid |
⊢ ( 𝜑 → ( 𝑀 ... ( 𝑁 − 1 ) ) ∈ Fin ) |
23 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
24 |
23 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ 𝑍 ) |
25 |
24 5
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝐴 ∈ ℂ ) |
26 |
22 25
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 ∈ ℂ ) |
27 |
15 18
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
28 |
2 11 27
|
serf |
⊢ ( 𝜑 → seq 𝑁 ( + , 𝐹 ) : 𝑊 ⟶ ℂ ) |
29 |
28
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
30 |
9
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
31 |
30
|
ltm1d |
⊢ ( 𝜑 → ( 𝑀 − 1 ) < 𝑀 ) |
32 |
|
peano2zm |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 − 1 ) ∈ ℤ ) |
33 |
|
fzn |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑀 − 1 ) ∈ ℤ ) → ( ( 𝑀 − 1 ) < 𝑀 ↔ ( 𝑀 ... ( 𝑀 − 1 ) ) = ∅ ) ) |
34 |
9 32 33
|
syl2anc2 |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) < 𝑀 ↔ ( 𝑀 ... ( 𝑀 − 1 ) ) = ∅ ) ) |
35 |
31 34
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 ... ( 𝑀 − 1 ) ) = ∅ ) |
36 |
35
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) 𝐴 = Σ 𝑘 ∈ ∅ 𝐴 ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) 𝐴 = Σ 𝑘 ∈ ∅ 𝐴 ) |
38 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ 𝐴 = 0 |
39 |
37 38
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) 𝐴 = 0 ) |
40 |
39
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) 𝐴 + ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) = ( 0 + ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) |
41 |
14
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → 𝑗 ∈ 𝑍 ) |
42 |
1 9 18
|
serf |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℂ ) |
43 |
42
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
44 |
41 43
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
45 |
44
|
addid2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → ( 0 + ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) |
46 |
40 45
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) 𝐴 + ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) |
47 |
|
oveq1 |
⊢ ( 𝑁 = 𝑀 → ( 𝑁 − 1 ) = ( 𝑀 − 1 ) ) |
48 |
47
|
oveq2d |
⊢ ( 𝑁 = 𝑀 → ( 𝑀 ... ( 𝑁 − 1 ) ) = ( 𝑀 ... ( 𝑀 − 1 ) ) ) |
49 |
48
|
sumeq1d |
⊢ ( 𝑁 = 𝑀 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) 𝐴 ) |
50 |
|
seqeq1 |
⊢ ( 𝑁 = 𝑀 → seq 𝑁 ( + , 𝐹 ) = seq 𝑀 ( + , 𝐹 ) ) |
51 |
50
|
fveq1d |
⊢ ( 𝑁 = 𝑀 → ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑗 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) |
52 |
49 51
|
oveq12d |
⊢ ( 𝑁 = 𝑀 → ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑗 ) ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) 𝐴 + ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) |
53 |
52
|
eqeq2d |
⊢ ( 𝑁 = 𝑀 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑗 ) ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) 𝐴 + ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ) |
54 |
46 53
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → ( 𝑁 = 𝑀 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ) |
55 |
|
addcl |
⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 𝑘 + 𝑚 ) ∈ ℂ ) |
56 |
55
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ) ) → ( 𝑘 + 𝑚 ) ∈ ℂ ) |
57 |
|
addass |
⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 + 𝑚 ) + 𝑥 ) = ( 𝑘 + ( 𝑚 + 𝑥 ) ) ) |
58 |
57
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( ( 𝑘 + 𝑚 ) + 𝑥 ) = ( 𝑘 + ( 𝑚 + 𝑥 ) ) ) |
59 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑗 ∈ 𝑊 ) |
60 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝜑 ) |
61 |
11
|
zcnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
62 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
63 |
|
npcan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
64 |
61 62 63
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
65 |
64
|
eqcomd |
⊢ ( 𝜑 → 𝑁 = ( ( 𝑁 − 1 ) + 1 ) ) |
66 |
60 65
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑁 = ( ( 𝑁 − 1 ) + 1 ) ) |
67 |
66
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) |
68 |
2 67
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑊 = ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) |
69 |
59 68
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑗 ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) |
70 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → 𝑀 ∈ ℤ ) |
71 |
|
eluzp1m1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
72 |
70 71
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
73 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
74 |
73 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ 𝑍 ) |
75 |
60 74 18
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
76 |
56 58 69 72 75
|
seqsplit |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) + ( seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) ) ) |
77 |
60 24 4
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
78 |
60 24 5
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝐴 ∈ ℂ ) |
79 |
77 72 78
|
fsumser |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) |
80 |
66
|
seqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → seq 𝑁 ( + , 𝐹 ) = seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) ) |
81 |
80
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑗 ) = ( seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) ) |
82 |
79 81
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑗 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) + ( seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) ) ) |
83 |
76 82
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑗 ) ) ) |
84 |
83
|
ex |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ) |
85 |
|
uzp1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 = 𝑀 ∨ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
86 |
7 85
|
syl |
⊢ ( 𝜑 → ( 𝑁 = 𝑀 ∨ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
87 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → ( 𝑁 = 𝑀 ∨ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
88 |
54 84 87
|
mpjaod |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑗 ) ) ) |
89 |
2 11 21 26 6 29 88
|
climaddc2 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + Σ 𝑘 ∈ 𝑊 𝐴 ) ) |
90 |
1 9 4 5 89
|
isumclim |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + Σ 𝑘 ∈ 𝑊 𝐴 ) ) |