Description: An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isumsup.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
isumsup.2 | ⊢ 𝐺 = seq 𝑀 ( + , 𝐹 ) | ||
isumsup.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
isumsup.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | ||
isumsup.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) | ||
isumsup.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ 𝐴 ) | ||
isumsup.7 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ) | ||
Assertion | isumsup | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = sup ( ran 𝐺 , ℝ , < ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumsup.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
2 | isumsup.2 | ⊢ 𝐺 = seq 𝑀 ( + , 𝐹 ) | |
3 | isumsup.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
4 | isumsup.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
5 | isumsup.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) | |
6 | isumsup.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ 𝐴 ) | |
7 | isumsup.7 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ) | |
8 | 5 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
9 | 1 2 3 4 5 6 7 | isumsup2 | ⊢ ( 𝜑 → 𝐺 ⇝ sup ( ran 𝐺 , ℝ , < ) ) |
10 | 2 9 | eqbrtrrid | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ sup ( ran 𝐺 , ℝ , < ) ) |
11 | 1 3 4 8 10 | isumclim | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = sup ( ran 𝐺 , ℝ , < ) ) |