| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isumsup.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | isumsup.2 | ⊢ 𝐺  =  seq 𝑀 (  +  ,  𝐹 ) | 
						
							| 3 |  | isumsup.3 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | isumsup.4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  𝐴 ) | 
						
							| 5 |  | isumsup.5 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐴  ∈  ℝ ) | 
						
							| 6 |  | isumsup.6 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  0  ≤  𝐴 ) | 
						
							| 7 |  | isumsup.7 | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑗  ∈  𝑍 ( 𝐺 ‘ 𝑗 )  ≤  𝑥 ) | 
						
							| 8 | 4 5 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 9 | 1 3 8 | serfre | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 ) : 𝑍 ⟶ ℝ ) | 
						
							| 10 | 2 | feq1i | ⊢ ( 𝐺 : 𝑍 ⟶ ℝ  ↔  seq 𝑀 (  +  ,  𝐹 ) : 𝑍 ⟶ ℝ ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( 𝜑  →  𝐺 : 𝑍 ⟶ ℝ ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑗  ∈  𝑍 ) | 
						
							| 13 | 12 1 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 14 |  | eluzelz | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑗  ∈  ℤ ) | 
						
							| 15 |  | uzid | ⊢ ( 𝑗  ∈  ℤ  →  𝑗  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 16 |  | peano2uz | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( 𝑗  +  1 )  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 17 | 13 14 15 16 | 4syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝑗  +  1 )  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 18 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝜑 ) | 
						
							| 19 |  | elfzuz | ⊢ ( 𝑘  ∈  ( 𝑀 ... ( 𝑗  +  1 ) )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 20 | 19 1 | eleqtrrdi | ⊢ ( 𝑘  ∈  ( 𝑀 ... ( 𝑗  +  1 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 21 | 18 20 8 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( 𝑀 ... ( 𝑗  +  1 ) ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 22 | 1 | peano2uzs | ⊢ ( 𝑗  ∈  𝑍  →  ( 𝑗  +  1 )  ∈  𝑍 ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝑗  +  1 )  ∈  𝑍 ) | 
						
							| 24 |  | elfzuz | ⊢ ( 𝑘  ∈  ( ( 𝑗  +  1 ) ... ( 𝑗  +  1 ) )  →  𝑘  ∈  ( ℤ≥ ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 25 | 1 | uztrn2 | ⊢ ( ( ( 𝑗  +  1 )  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑗  +  1 ) ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 26 | 23 24 25 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ( 𝑗  +  1 ) ... ( 𝑗  +  1 ) ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 27 | 6 4 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  0  ≤  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 28 | 27 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  𝑍 )  →  0  ≤  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 29 | 26 28 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  𝑘  ∈  ( ( 𝑗  +  1 ) ... ( 𝑗  +  1 ) ) )  →  0  ≤  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 30 | 13 17 21 29 | sermono | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 )  ≤  ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 31 | 2 | fveq1i | ⊢ ( 𝐺 ‘ 𝑗 )  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑗 ) | 
						
							| 32 | 2 | fveq1i | ⊢ ( 𝐺 ‘ ( 𝑗  +  1 ) )  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑗  +  1 ) ) | 
						
							| 33 | 30 31 32 | 3brtr4g | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑗 )  ≤  ( 𝐺 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 34 | 1 3 11 33 7 | climsup | ⊢ ( 𝜑  →  𝐺  ⇝  sup ( ran  𝐺 ,  ℝ ,   <  ) ) |