| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unit.1 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 2 |
|
unit.2 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 3 |
|
unit.3 |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
| 4 |
|
unit.4 |
⊢ 𝑆 = ( oppr ‘ 𝑅 ) |
| 5 |
|
unit.5 |
⊢ 𝐸 = ( ∥r ‘ 𝑆 ) |
| 6 |
|
elfvdm |
⊢ ( 𝑋 ∈ ( Unit ‘ 𝑅 ) → 𝑅 ∈ dom Unit ) |
| 7 |
6 1
|
eleq2s |
⊢ ( 𝑋 ∈ 𝑈 → 𝑅 ∈ dom Unit ) |
| 8 |
7
|
elexd |
⊢ ( 𝑋 ∈ 𝑈 → 𝑅 ∈ V ) |
| 9 |
|
df-br |
⊢ ( 𝑋 ∥ 1 ↔ 〈 𝑋 , 1 〉 ∈ ∥ ) |
| 10 |
|
elfvdm |
⊢ ( 〈 𝑋 , 1 〉 ∈ ( ∥r ‘ 𝑅 ) → 𝑅 ∈ dom ∥r ) |
| 11 |
10 3
|
eleq2s |
⊢ ( 〈 𝑋 , 1 〉 ∈ ∥ → 𝑅 ∈ dom ∥r ) |
| 12 |
11
|
elexd |
⊢ ( 〈 𝑋 , 1 〉 ∈ ∥ → 𝑅 ∈ V ) |
| 13 |
9 12
|
sylbi |
⊢ ( 𝑋 ∥ 1 → 𝑅 ∈ V ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑋 ∥ 1 ∧ 𝑋 𝐸 1 ) → 𝑅 ∈ V ) |
| 15 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( ∥r ‘ 𝑟 ) = ( ∥r ‘ 𝑅 ) ) |
| 16 |
15 3
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( ∥r ‘ 𝑟 ) = ∥ ) |
| 17 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( oppr ‘ 𝑟 ) = ( oppr ‘ 𝑅 ) ) |
| 18 |
17 4
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( oppr ‘ 𝑟 ) = 𝑆 ) |
| 19 |
18
|
fveq2d |
⊢ ( 𝑟 = 𝑅 → ( ∥r ‘ ( oppr ‘ 𝑟 ) ) = ( ∥r ‘ 𝑆 ) ) |
| 20 |
19 5
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( ∥r ‘ ( oppr ‘ 𝑟 ) ) = 𝐸 ) |
| 21 |
16 20
|
ineq12d |
⊢ ( 𝑟 = 𝑅 → ( ( ∥r ‘ 𝑟 ) ∩ ( ∥r ‘ ( oppr ‘ 𝑟 ) ) ) = ( ∥ ∩ 𝐸 ) ) |
| 22 |
21
|
cnveqd |
⊢ ( 𝑟 = 𝑅 → ◡ ( ( ∥r ‘ 𝑟 ) ∩ ( ∥r ‘ ( oppr ‘ 𝑟 ) ) ) = ◡ ( ∥ ∩ 𝐸 ) ) |
| 23 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( 1r ‘ 𝑟 ) = ( 1r ‘ 𝑅 ) ) |
| 24 |
23 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( 1r ‘ 𝑟 ) = 1 ) |
| 25 |
24
|
sneqd |
⊢ ( 𝑟 = 𝑅 → { ( 1r ‘ 𝑟 ) } = { 1 } ) |
| 26 |
22 25
|
imaeq12d |
⊢ ( 𝑟 = 𝑅 → ( ◡ ( ( ∥r ‘ 𝑟 ) ∩ ( ∥r ‘ ( oppr ‘ 𝑟 ) ) ) “ { ( 1r ‘ 𝑟 ) } ) = ( ◡ ( ∥ ∩ 𝐸 ) “ { 1 } ) ) |
| 27 |
|
df-unit |
⊢ Unit = ( 𝑟 ∈ V ↦ ( ◡ ( ( ∥r ‘ 𝑟 ) ∩ ( ∥r ‘ ( oppr ‘ 𝑟 ) ) ) “ { ( 1r ‘ 𝑟 ) } ) ) |
| 28 |
3
|
fvexi |
⊢ ∥ ∈ V |
| 29 |
28
|
inex1 |
⊢ ( ∥ ∩ 𝐸 ) ∈ V |
| 30 |
29
|
cnvex |
⊢ ◡ ( ∥ ∩ 𝐸 ) ∈ V |
| 31 |
30
|
imaex |
⊢ ( ◡ ( ∥ ∩ 𝐸 ) “ { 1 } ) ∈ V |
| 32 |
26 27 31
|
fvmpt |
⊢ ( 𝑅 ∈ V → ( Unit ‘ 𝑅 ) = ( ◡ ( ∥ ∩ 𝐸 ) “ { 1 } ) ) |
| 33 |
1 32
|
eqtrid |
⊢ ( 𝑅 ∈ V → 𝑈 = ( ◡ ( ∥ ∩ 𝐸 ) “ { 1 } ) ) |
| 34 |
33
|
eleq2d |
⊢ ( 𝑅 ∈ V → ( 𝑋 ∈ 𝑈 ↔ 𝑋 ∈ ( ◡ ( ∥ ∩ 𝐸 ) “ { 1 } ) ) ) |
| 35 |
|
inss1 |
⊢ ( ∥ ∩ 𝐸 ) ⊆ ∥ |
| 36 |
3
|
reldvdsr |
⊢ Rel ∥ |
| 37 |
|
relss |
⊢ ( ( ∥ ∩ 𝐸 ) ⊆ ∥ → ( Rel ∥ → Rel ( ∥ ∩ 𝐸 ) ) ) |
| 38 |
35 36 37
|
mp2 |
⊢ Rel ( ∥ ∩ 𝐸 ) |
| 39 |
|
eliniseg2 |
⊢ ( Rel ( ∥ ∩ 𝐸 ) → ( 𝑋 ∈ ( ◡ ( ∥ ∩ 𝐸 ) “ { 1 } ) ↔ 𝑋 ( ∥ ∩ 𝐸 ) 1 ) ) |
| 40 |
38 39
|
ax-mp |
⊢ ( 𝑋 ∈ ( ◡ ( ∥ ∩ 𝐸 ) “ { 1 } ) ↔ 𝑋 ( ∥ ∩ 𝐸 ) 1 ) |
| 41 |
|
brin |
⊢ ( 𝑋 ( ∥ ∩ 𝐸 ) 1 ↔ ( 𝑋 ∥ 1 ∧ 𝑋 𝐸 1 ) ) |
| 42 |
40 41
|
bitri |
⊢ ( 𝑋 ∈ ( ◡ ( ∥ ∩ 𝐸 ) “ { 1 } ) ↔ ( 𝑋 ∥ 1 ∧ 𝑋 𝐸 1 ) ) |
| 43 |
34 42
|
bitrdi |
⊢ ( 𝑅 ∈ V → ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∥ 1 ∧ 𝑋 𝐸 1 ) ) ) |
| 44 |
8 14 43
|
pm5.21nii |
⊢ ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∥ 1 ∧ 𝑋 𝐸 1 ) ) |