Step |
Hyp |
Ref |
Expression |
1 |
|
isuspgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
isuspgr.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
1 2
|
isusgr |
⊢ ( 𝐺 ∈ 𝑈 → ( 𝐺 ∈ USGraph ↔ 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
4 |
|
prprrab |
⊢ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } |
5 |
|
f1eq3 |
⊢ ( { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
6 |
4 5
|
mp1i |
⊢ ( 𝐺 ∈ 𝑈 → ( 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |
7 |
3 6
|
bitrd |
⊢ ( 𝐺 ∈ 𝑈 → ( 𝐺 ∈ USGraph ↔ 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) ) |