| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isuhgr.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | isuhgr.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | df-ushgr | ⊢ USHGraph  =  { 𝑔  ∣  [ ( Vtx ‘ 𝑔 )  /  𝑣 ] [ ( iEdg ‘ 𝑔 )  /  𝑒 ] 𝑒 : dom  𝑒 –1-1→ ( 𝒫  𝑣  ∖  { ∅ } ) } | 
						
							| 4 | 3 | eleq2i | ⊢ ( 𝐺  ∈  USHGraph  ↔  𝐺  ∈  { 𝑔  ∣  [ ( Vtx ‘ 𝑔 )  /  𝑣 ] [ ( iEdg ‘ 𝑔 )  /  𝑒 ] 𝑒 : dom  𝑒 –1-1→ ( 𝒫  𝑣  ∖  { ∅ } ) } ) | 
						
							| 5 |  | fveq2 | ⊢ ( ℎ  =  𝐺  →  ( iEdg ‘ ℎ )  =  ( iEdg ‘ 𝐺 ) ) | 
						
							| 6 | 5 2 | eqtr4di | ⊢ ( ℎ  =  𝐺  →  ( iEdg ‘ ℎ )  =  𝐸 ) | 
						
							| 7 | 5 | dmeqd | ⊢ ( ℎ  =  𝐺  →  dom  ( iEdg ‘ ℎ )  =  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 8 | 2 | eqcomi | ⊢ ( iEdg ‘ 𝐺 )  =  𝐸 | 
						
							| 9 | 8 | dmeqi | ⊢ dom  ( iEdg ‘ 𝐺 )  =  dom  𝐸 | 
						
							| 10 | 7 9 | eqtrdi | ⊢ ( ℎ  =  𝐺  →  dom  ( iEdg ‘ ℎ )  =  dom  𝐸 ) | 
						
							| 11 |  | fveq2 | ⊢ ( ℎ  =  𝐺  →  ( Vtx ‘ ℎ )  =  ( Vtx ‘ 𝐺 ) ) | 
						
							| 12 | 11 1 | eqtr4di | ⊢ ( ℎ  =  𝐺  →  ( Vtx ‘ ℎ )  =  𝑉 ) | 
						
							| 13 | 12 | pweqd | ⊢ ( ℎ  =  𝐺  →  𝒫  ( Vtx ‘ ℎ )  =  𝒫  𝑉 ) | 
						
							| 14 | 13 | difeq1d | ⊢ ( ℎ  =  𝐺  →  ( 𝒫  ( Vtx ‘ ℎ )  ∖  { ∅ } )  =  ( 𝒫  𝑉  ∖  { ∅ } ) ) | 
						
							| 15 | 6 10 14 | f1eq123d | ⊢ ( ℎ  =  𝐺  →  ( ( iEdg ‘ ℎ ) : dom  ( iEdg ‘ ℎ ) –1-1→ ( 𝒫  ( Vtx ‘ ℎ )  ∖  { ∅ } )  ↔  𝐸 : dom  𝐸 –1-1→ ( 𝒫  𝑉  ∖  { ∅ } ) ) ) | 
						
							| 16 |  | fvexd | ⊢ ( 𝑔  =  ℎ  →  ( Vtx ‘ 𝑔 )  ∈  V ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑔  =  ℎ  →  ( Vtx ‘ 𝑔 )  =  ( Vtx ‘ ℎ ) ) | 
						
							| 18 |  | fvexd | ⊢ ( ( 𝑔  =  ℎ  ∧  𝑣  =  ( Vtx ‘ ℎ ) )  →  ( iEdg ‘ 𝑔 )  ∈  V ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑔  =  ℎ  →  ( iEdg ‘ 𝑔 )  =  ( iEdg ‘ ℎ ) ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝑔  =  ℎ  ∧  𝑣  =  ( Vtx ‘ ℎ ) )  →  ( iEdg ‘ 𝑔 )  =  ( iEdg ‘ ℎ ) ) | 
						
							| 21 |  | simpr | ⊢ ( ( ( 𝑔  =  ℎ  ∧  𝑣  =  ( Vtx ‘ ℎ ) )  ∧  𝑒  =  ( iEdg ‘ ℎ ) )  →  𝑒  =  ( iEdg ‘ ℎ ) ) | 
						
							| 22 | 21 | dmeqd | ⊢ ( ( ( 𝑔  =  ℎ  ∧  𝑣  =  ( Vtx ‘ ℎ ) )  ∧  𝑒  =  ( iEdg ‘ ℎ ) )  →  dom  𝑒  =  dom  ( iEdg ‘ ℎ ) ) | 
						
							| 23 |  | simpr | ⊢ ( ( 𝑔  =  ℎ  ∧  𝑣  =  ( Vtx ‘ ℎ ) )  →  𝑣  =  ( Vtx ‘ ℎ ) ) | 
						
							| 24 | 23 | pweqd | ⊢ ( ( 𝑔  =  ℎ  ∧  𝑣  =  ( Vtx ‘ ℎ ) )  →  𝒫  𝑣  =  𝒫  ( Vtx ‘ ℎ ) ) | 
						
							| 25 | 24 | difeq1d | ⊢ ( ( 𝑔  =  ℎ  ∧  𝑣  =  ( Vtx ‘ ℎ ) )  →  ( 𝒫  𝑣  ∖  { ∅ } )  =  ( 𝒫  ( Vtx ‘ ℎ )  ∖  { ∅ } ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( ( 𝑔  =  ℎ  ∧  𝑣  =  ( Vtx ‘ ℎ ) )  ∧  𝑒  =  ( iEdg ‘ ℎ ) )  →  ( 𝒫  𝑣  ∖  { ∅ } )  =  ( 𝒫  ( Vtx ‘ ℎ )  ∖  { ∅ } ) ) | 
						
							| 27 | 21 22 26 | f1eq123d | ⊢ ( ( ( 𝑔  =  ℎ  ∧  𝑣  =  ( Vtx ‘ ℎ ) )  ∧  𝑒  =  ( iEdg ‘ ℎ ) )  →  ( 𝑒 : dom  𝑒 –1-1→ ( 𝒫  𝑣  ∖  { ∅ } )  ↔  ( iEdg ‘ ℎ ) : dom  ( iEdg ‘ ℎ ) –1-1→ ( 𝒫  ( Vtx ‘ ℎ )  ∖  { ∅ } ) ) ) | 
						
							| 28 | 18 20 27 | sbcied2 | ⊢ ( ( 𝑔  =  ℎ  ∧  𝑣  =  ( Vtx ‘ ℎ ) )  →  ( [ ( iEdg ‘ 𝑔 )  /  𝑒 ] 𝑒 : dom  𝑒 –1-1→ ( 𝒫  𝑣  ∖  { ∅ } )  ↔  ( iEdg ‘ ℎ ) : dom  ( iEdg ‘ ℎ ) –1-1→ ( 𝒫  ( Vtx ‘ ℎ )  ∖  { ∅ } ) ) ) | 
						
							| 29 | 16 17 28 | sbcied2 | ⊢ ( 𝑔  =  ℎ  →  ( [ ( Vtx ‘ 𝑔 )  /  𝑣 ] [ ( iEdg ‘ 𝑔 )  /  𝑒 ] 𝑒 : dom  𝑒 –1-1→ ( 𝒫  𝑣  ∖  { ∅ } )  ↔  ( iEdg ‘ ℎ ) : dom  ( iEdg ‘ ℎ ) –1-1→ ( 𝒫  ( Vtx ‘ ℎ )  ∖  { ∅ } ) ) ) | 
						
							| 30 | 29 | cbvabv | ⊢ { 𝑔  ∣  [ ( Vtx ‘ 𝑔 )  /  𝑣 ] [ ( iEdg ‘ 𝑔 )  /  𝑒 ] 𝑒 : dom  𝑒 –1-1→ ( 𝒫  𝑣  ∖  { ∅ } ) }  =  { ℎ  ∣  ( iEdg ‘ ℎ ) : dom  ( iEdg ‘ ℎ ) –1-1→ ( 𝒫  ( Vtx ‘ ℎ )  ∖  { ∅ } ) } | 
						
							| 31 | 15 30 | elab2g | ⊢ ( 𝐺  ∈  𝑈  →  ( 𝐺  ∈  { 𝑔  ∣  [ ( Vtx ‘ 𝑔 )  /  𝑣 ] [ ( iEdg ‘ 𝑔 )  /  𝑒 ] 𝑒 : dom  𝑒 –1-1→ ( 𝒫  𝑣  ∖  { ∅ } ) }  ↔  𝐸 : dom  𝐸 –1-1→ ( 𝒫  𝑉  ∖  { ∅ } ) ) ) | 
						
							| 32 | 4 31 | bitrid | ⊢ ( 𝐺  ∈  𝑈  →  ( 𝐺  ∈  USHGraph  ↔  𝐸 : dom  𝐸 –1-1→ ( 𝒫  𝑉  ∖  { ∅ } ) ) ) |