Step |
Hyp |
Ref |
Expression |
1 |
|
isusp.1 |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
isusp.2 |
⊢ 𝑈 = ( UnifSt ‘ 𝑊 ) |
3 |
|
isusp.3 |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
4 |
|
elex |
⊢ ( 𝑊 ∈ UnifSp → 𝑊 ∈ V ) |
5 |
|
0nep0 |
⊢ ∅ ≠ { ∅ } |
6 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( Base ‘ 𝑊 ) = ∅ ) |
7 |
1 6
|
syl5eq |
⊢ ( ¬ 𝑊 ∈ V → 𝐵 = ∅ ) |
8 |
7
|
fveq2d |
⊢ ( ¬ 𝑊 ∈ V → ( UnifOn ‘ 𝐵 ) = ( UnifOn ‘ ∅ ) ) |
9 |
|
ust0 |
⊢ ( UnifOn ‘ ∅ ) = { { ∅ } } |
10 |
8 9
|
eqtrdi |
⊢ ( ¬ 𝑊 ∈ V → ( UnifOn ‘ 𝐵 ) = { { ∅ } } ) |
11 |
10
|
eleq2d |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑈 ∈ ( UnifOn ‘ 𝐵 ) ↔ 𝑈 ∈ { { ∅ } } ) ) |
12 |
2
|
fvexi |
⊢ 𝑈 ∈ V |
13 |
12
|
elsn |
⊢ ( 𝑈 ∈ { { ∅ } } ↔ 𝑈 = { ∅ } ) |
14 |
11 13
|
bitrdi |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑈 ∈ ( UnifOn ‘ 𝐵 ) ↔ 𝑈 = { ∅ } ) ) |
15 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( UnifSt ‘ 𝑊 ) = ∅ ) |
16 |
2 15
|
syl5eq |
⊢ ( ¬ 𝑊 ∈ V → 𝑈 = ∅ ) |
17 |
16
|
eqeq1d |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑈 = { ∅ } ↔ ∅ = { ∅ } ) ) |
18 |
14 17
|
bitrd |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑈 ∈ ( UnifOn ‘ 𝐵 ) ↔ ∅ = { ∅ } ) ) |
19 |
18
|
necon3bbid |
⊢ ( ¬ 𝑊 ∈ V → ( ¬ 𝑈 ∈ ( UnifOn ‘ 𝐵 ) ↔ ∅ ≠ { ∅ } ) ) |
20 |
5 19
|
mpbiri |
⊢ ( ¬ 𝑊 ∈ V → ¬ 𝑈 ∈ ( UnifOn ‘ 𝐵 ) ) |
21 |
20
|
con4i |
⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝐵 ) → 𝑊 ∈ V ) |
22 |
21
|
adantr |
⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝐵 ) ∧ 𝐽 = ( unifTop ‘ 𝑈 ) ) → 𝑊 ∈ V ) |
23 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( UnifSt ‘ 𝑤 ) = ( UnifSt ‘ 𝑊 ) ) |
24 |
23 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( UnifSt ‘ 𝑤 ) = 𝑈 ) |
25 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
26 |
25 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝐵 ) |
27 |
26
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( UnifOn ‘ ( Base ‘ 𝑤 ) ) = ( UnifOn ‘ 𝐵 ) ) |
28 |
24 27
|
eleq12d |
⊢ ( 𝑤 = 𝑊 → ( ( UnifSt ‘ 𝑤 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑤 ) ) ↔ 𝑈 ∈ ( UnifOn ‘ 𝐵 ) ) ) |
29 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( TopOpen ‘ 𝑤 ) = ( TopOpen ‘ 𝑊 ) ) |
30 |
29 3
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( TopOpen ‘ 𝑤 ) = 𝐽 ) |
31 |
24
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( unifTop ‘ ( UnifSt ‘ 𝑤 ) ) = ( unifTop ‘ 𝑈 ) ) |
32 |
30 31
|
eqeq12d |
⊢ ( 𝑤 = 𝑊 → ( ( TopOpen ‘ 𝑤 ) = ( unifTop ‘ ( UnifSt ‘ 𝑤 ) ) ↔ 𝐽 = ( unifTop ‘ 𝑈 ) ) ) |
33 |
28 32
|
anbi12d |
⊢ ( 𝑤 = 𝑊 → ( ( ( UnifSt ‘ 𝑤 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑤 ) ) ∧ ( TopOpen ‘ 𝑤 ) = ( unifTop ‘ ( UnifSt ‘ 𝑤 ) ) ) ↔ ( 𝑈 ∈ ( UnifOn ‘ 𝐵 ) ∧ 𝐽 = ( unifTop ‘ 𝑈 ) ) ) ) |
34 |
|
df-usp |
⊢ UnifSp = { 𝑤 ∣ ( ( UnifSt ‘ 𝑤 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑤 ) ) ∧ ( TopOpen ‘ 𝑤 ) = ( unifTop ‘ ( UnifSt ‘ 𝑤 ) ) ) } |
35 |
33 34
|
elab2g |
⊢ ( 𝑊 ∈ V → ( 𝑊 ∈ UnifSp ↔ ( 𝑈 ∈ ( UnifOn ‘ 𝐵 ) ∧ 𝐽 = ( unifTop ‘ 𝑈 ) ) ) ) |
36 |
4 22 35
|
pm5.21nii |
⊢ ( 𝑊 ∈ UnifSp ↔ ( 𝑈 ∈ ( UnifOn ‘ 𝐵 ) ∧ 𝐽 = ( unifTop ‘ 𝑈 ) ) ) |