| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ustval | ⊢ ( 𝑋  ∈  𝑉  →  ( UnifOn ‘ 𝑋 )  =  { 𝑢  ∣  ( 𝑢  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ∧  ( 𝑋  ×  𝑋 )  ∈  𝑢  ∧  ∀ 𝑣  ∈  𝑢 ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑢 )  ∧  ∀ 𝑤  ∈  𝑢 ( 𝑣  ∩  𝑤 )  ∈  𝑢  ∧  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑢  ∧  ∃ 𝑤  ∈  𝑢 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) ) } ) | 
						
							| 2 | 1 | eleq2d | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  ↔  𝑈  ∈  { 𝑢  ∣  ( 𝑢  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ∧  ( 𝑋  ×  𝑋 )  ∈  𝑢  ∧  ∀ 𝑣  ∈  𝑢 ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑢 )  ∧  ∀ 𝑤  ∈  𝑢 ( 𝑣  ∩  𝑤 )  ∈  𝑢  ∧  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑢  ∧  ∃ 𝑤  ∈  𝑢 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) ) } ) ) | 
						
							| 3 |  | simp1 | ⊢ ( ( 𝑈  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ∧  ( 𝑋  ×  𝑋 )  ∈  𝑈  ∧  ∀ 𝑣  ∈  𝑈 ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑈 )  ∧  ∀ 𝑤  ∈  𝑈 ( 𝑣  ∩  𝑤 )  ∈  𝑈  ∧  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑈  ∧  ∃ 𝑤  ∈  𝑈 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) )  →  𝑈  ⊆  𝒫  ( 𝑋  ×  𝑋 ) ) | 
						
							| 4 |  | sqxpexg | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋  ×  𝑋 )  ∈  V ) | 
						
							| 5 | 4 | pwexd | ⊢ ( 𝑋  ∈  𝑉  →  𝒫  ( 𝑋  ×  𝑋 )  ∈  V ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑈  ⊆  𝒫  ( 𝑋  ×  𝑋 ) )  →  𝒫  ( 𝑋  ×  𝑋 )  ∈  V ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑈  ⊆  𝒫  ( 𝑋  ×  𝑋 ) )  →  𝑈  ⊆  𝒫  ( 𝑋  ×  𝑋 ) ) | 
						
							| 8 | 6 7 | ssexd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑈  ⊆  𝒫  ( 𝑋  ×  𝑋 ) )  →  𝑈  ∈  V ) | 
						
							| 9 | 8 | ex | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑈  ⊆  𝒫  ( 𝑋  ×  𝑋 )  →  𝑈  ∈  V ) ) | 
						
							| 10 | 3 9 | syl5 | ⊢ ( 𝑋  ∈  𝑉  →  ( ( 𝑈  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ∧  ( 𝑋  ×  𝑋 )  ∈  𝑈  ∧  ∀ 𝑣  ∈  𝑈 ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑈 )  ∧  ∀ 𝑤  ∈  𝑈 ( 𝑣  ∩  𝑤 )  ∈  𝑈  ∧  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑈  ∧  ∃ 𝑤  ∈  𝑈 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) )  →  𝑈  ∈  V ) ) | 
						
							| 11 |  | sseq1 | ⊢ ( 𝑢  =  𝑈  →  ( 𝑢  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ↔  𝑈  ⊆  𝒫  ( 𝑋  ×  𝑋 ) ) ) | 
						
							| 12 |  | eleq2 | ⊢ ( 𝑢  =  𝑈  →  ( ( 𝑋  ×  𝑋 )  ∈  𝑢  ↔  ( 𝑋  ×  𝑋 )  ∈  𝑈 ) ) | 
						
							| 13 |  | eleq2 | ⊢ ( 𝑢  =  𝑈  →  ( 𝑤  ∈  𝑢  ↔  𝑤  ∈  𝑈 ) ) | 
						
							| 14 | 13 | imbi2d | ⊢ ( 𝑢  =  𝑈  →  ( ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑢 )  ↔  ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑈 ) ) ) | 
						
							| 15 | 14 | ralbidv | ⊢ ( 𝑢  =  𝑈  →  ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑢 )  ↔  ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑈 ) ) ) | 
						
							| 16 |  | eleq2 | ⊢ ( 𝑢  =  𝑈  →  ( ( 𝑣  ∩  𝑤 )  ∈  𝑢  ↔  ( 𝑣  ∩  𝑤 )  ∈  𝑈 ) ) | 
						
							| 17 | 16 | raleqbi1dv | ⊢ ( 𝑢  =  𝑈  →  ( ∀ 𝑤  ∈  𝑢 ( 𝑣  ∩  𝑤 )  ∈  𝑢  ↔  ∀ 𝑤  ∈  𝑈 ( 𝑣  ∩  𝑤 )  ∈  𝑈 ) ) | 
						
							| 18 |  | eleq2 | ⊢ ( 𝑢  =  𝑈  →  ( ◡ 𝑣  ∈  𝑢  ↔  ◡ 𝑣  ∈  𝑈 ) ) | 
						
							| 19 |  | rexeq | ⊢ ( 𝑢  =  𝑈  →  ( ∃ 𝑤  ∈  𝑢 ( 𝑤  ∘  𝑤 )  ⊆  𝑣  ↔  ∃ 𝑤  ∈  𝑈 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) | 
						
							| 20 | 18 19 | 3anbi23d | ⊢ ( 𝑢  =  𝑈  →  ( ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑢  ∧  ∃ 𝑤  ∈  𝑢 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 )  ↔  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑈  ∧  ∃ 𝑤  ∈  𝑈 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) ) | 
						
							| 21 | 15 17 20 | 3anbi123d | ⊢ ( 𝑢  =  𝑈  →  ( ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑢 )  ∧  ∀ 𝑤  ∈  𝑢 ( 𝑣  ∩  𝑤 )  ∈  𝑢  ∧  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑢  ∧  ∃ 𝑤  ∈  𝑢 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) )  ↔  ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑈 )  ∧  ∀ 𝑤  ∈  𝑈 ( 𝑣  ∩  𝑤 )  ∈  𝑈  ∧  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑈  ∧  ∃ 𝑤  ∈  𝑈 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) ) ) | 
						
							| 22 | 21 | raleqbi1dv | ⊢ ( 𝑢  =  𝑈  →  ( ∀ 𝑣  ∈  𝑢 ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑢 )  ∧  ∀ 𝑤  ∈  𝑢 ( 𝑣  ∩  𝑤 )  ∈  𝑢  ∧  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑢  ∧  ∃ 𝑤  ∈  𝑢 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) )  ↔  ∀ 𝑣  ∈  𝑈 ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑈 )  ∧  ∀ 𝑤  ∈  𝑈 ( 𝑣  ∩  𝑤 )  ∈  𝑈  ∧  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑈  ∧  ∃ 𝑤  ∈  𝑈 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) ) ) | 
						
							| 23 | 11 12 22 | 3anbi123d | ⊢ ( 𝑢  =  𝑈  →  ( ( 𝑢  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ∧  ( 𝑋  ×  𝑋 )  ∈  𝑢  ∧  ∀ 𝑣  ∈  𝑢 ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑢 )  ∧  ∀ 𝑤  ∈  𝑢 ( 𝑣  ∩  𝑤 )  ∈  𝑢  ∧  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑢  ∧  ∃ 𝑤  ∈  𝑢 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) )  ↔  ( 𝑈  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ∧  ( 𝑋  ×  𝑋 )  ∈  𝑈  ∧  ∀ 𝑣  ∈  𝑈 ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑈 )  ∧  ∀ 𝑤  ∈  𝑈 ( 𝑣  ∩  𝑤 )  ∈  𝑈  ∧  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑈  ∧  ∃ 𝑤  ∈  𝑈 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) ) ) ) | 
						
							| 24 | 23 | elab3g | ⊢ ( ( ( 𝑈  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ∧  ( 𝑋  ×  𝑋 )  ∈  𝑈  ∧  ∀ 𝑣  ∈  𝑈 ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑈 )  ∧  ∀ 𝑤  ∈  𝑈 ( 𝑣  ∩  𝑤 )  ∈  𝑈  ∧  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑈  ∧  ∃ 𝑤  ∈  𝑈 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) )  →  𝑈  ∈  V )  →  ( 𝑈  ∈  { 𝑢  ∣  ( 𝑢  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ∧  ( 𝑋  ×  𝑋 )  ∈  𝑢  ∧  ∀ 𝑣  ∈  𝑢 ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑢 )  ∧  ∀ 𝑤  ∈  𝑢 ( 𝑣  ∩  𝑤 )  ∈  𝑢  ∧  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑢  ∧  ∃ 𝑤  ∈  𝑢 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) ) }  ↔  ( 𝑈  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ∧  ( 𝑋  ×  𝑋 )  ∈  𝑈  ∧  ∀ 𝑣  ∈  𝑈 ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑈 )  ∧  ∀ 𝑤  ∈  𝑈 ( 𝑣  ∩  𝑤 )  ∈  𝑈  ∧  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑈  ∧  ∃ 𝑤  ∈  𝑈 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) ) ) ) | 
						
							| 25 | 10 24 | syl | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑈  ∈  { 𝑢  ∣  ( 𝑢  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ∧  ( 𝑋  ×  𝑋 )  ∈  𝑢  ∧  ∀ 𝑣  ∈  𝑢 ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑢 )  ∧  ∀ 𝑤  ∈  𝑢 ( 𝑣  ∩  𝑤 )  ∈  𝑢  ∧  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑢  ∧  ∃ 𝑤  ∈  𝑢 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) ) }  ↔  ( 𝑈  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ∧  ( 𝑋  ×  𝑋 )  ∈  𝑈  ∧  ∀ 𝑣  ∈  𝑈 ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑈 )  ∧  ∀ 𝑤  ∈  𝑈 ( 𝑣  ∩  𝑤 )  ∈  𝑈  ∧  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑈  ∧  ∃ 𝑤  ∈  𝑈 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) ) ) ) | 
						
							| 26 | 2 25 | bitrd | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑈  ∈  ( UnifOn ‘ 𝑋 )  ↔  ( 𝑈  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ∧  ( 𝑋  ×  𝑋 )  ∈  𝑈  ∧  ∀ 𝑣  ∈  𝑈 ( ∀ 𝑤  ∈  𝒫  ( 𝑋  ×  𝑋 ) ( 𝑣  ⊆  𝑤  →  𝑤  ∈  𝑈 )  ∧  ∀ 𝑤  ∈  𝑈 ( 𝑣  ∩  𝑤 )  ∈  𝑈  ∧  ( (  I   ↾  𝑋 )  ⊆  𝑣  ∧  ◡ 𝑣  ∈  𝑈  ∧  ∃ 𝑤  ∈  𝑈 ( 𝑤  ∘  𝑤 )  ⊆  𝑣 ) ) ) ) ) |