Step |
Hyp |
Ref |
Expression |
1 |
|
isvcOLD.1 |
⊢ 𝑋 = ran 𝐺 |
2 |
|
vcex |
⊢ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) |
3 |
|
elex |
⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ V ) |
4 |
3
|
adantr |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ) → 𝐺 ∈ V ) |
5 |
|
cnex |
⊢ ℂ ∈ V |
6 |
|
ablogrpo |
⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp ) |
7 |
|
rnexg |
⊢ ( 𝐺 ∈ GrpOp → ran 𝐺 ∈ V ) |
8 |
1 7
|
eqeltrid |
⊢ ( 𝐺 ∈ GrpOp → 𝑋 ∈ V ) |
9 |
6 8
|
syl |
⊢ ( 𝐺 ∈ AbelOp → 𝑋 ∈ V ) |
10 |
|
xpexg |
⊢ ( ( ℂ ∈ V ∧ 𝑋 ∈ V ) → ( ℂ × 𝑋 ) ∈ V ) |
11 |
5 9 10
|
sylancr |
⊢ ( 𝐺 ∈ AbelOp → ( ℂ × 𝑋 ) ∈ V ) |
12 |
|
fex |
⊢ ( ( 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ( ℂ × 𝑋 ) ∈ V ) → 𝑆 ∈ V ) |
13 |
11 12
|
sylan2 |
⊢ ( ( 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ 𝐺 ∈ AbelOp ) → 𝑆 ∈ V ) |
14 |
13
|
ancoms |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ) → 𝑆 ∈ V ) |
15 |
4 14
|
jca |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ) → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) |
16 |
15
|
3adant3 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) → ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) ) |
17 |
1
|
isvclem |
⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ) → ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ↔ ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) ) |
18 |
2 16 17
|
pm5.21nii |
⊢ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ↔ ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) |