| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isvcOLD.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | vcex | ⊢ ( 〈 𝐺 ,  𝑆 〉  ∈  CVecOLD  →  ( 𝐺  ∈  V  ∧  𝑆  ∈  V ) ) | 
						
							| 3 |  | elex | ⊢ ( 𝐺  ∈  AbelOp  →  𝐺  ∈  V ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  𝑆 : ( ℂ  ×  𝑋 ) ⟶ 𝑋 )  →  𝐺  ∈  V ) | 
						
							| 5 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 6 |  | ablogrpo | ⊢ ( 𝐺  ∈  AbelOp  →  𝐺  ∈  GrpOp ) | 
						
							| 7 |  | rnexg | ⊢ ( 𝐺  ∈  GrpOp  →  ran  𝐺  ∈  V ) | 
						
							| 8 | 1 7 | eqeltrid | ⊢ ( 𝐺  ∈  GrpOp  →  𝑋  ∈  V ) | 
						
							| 9 | 6 8 | syl | ⊢ ( 𝐺  ∈  AbelOp  →  𝑋  ∈  V ) | 
						
							| 10 |  | xpexg | ⊢ ( ( ℂ  ∈  V  ∧  𝑋  ∈  V )  →  ( ℂ  ×  𝑋 )  ∈  V ) | 
						
							| 11 | 5 9 10 | sylancr | ⊢ ( 𝐺  ∈  AbelOp  →  ( ℂ  ×  𝑋 )  ∈  V ) | 
						
							| 12 |  | fex | ⊢ ( ( 𝑆 : ( ℂ  ×  𝑋 ) ⟶ 𝑋  ∧  ( ℂ  ×  𝑋 )  ∈  V )  →  𝑆  ∈  V ) | 
						
							| 13 | 11 12 | sylan2 | ⊢ ( ( 𝑆 : ( ℂ  ×  𝑋 ) ⟶ 𝑋  ∧  𝐺  ∈  AbelOp )  →  𝑆  ∈  V ) | 
						
							| 14 | 13 | ancoms | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  𝑆 : ( ℂ  ×  𝑋 ) ⟶ 𝑋 )  →  𝑆  ∈  V ) | 
						
							| 15 | 4 14 | jca | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  𝑆 : ( ℂ  ×  𝑋 ) ⟶ 𝑋 )  →  ( 𝐺  ∈  V  ∧  𝑆  ∈  V ) ) | 
						
							| 16 | 15 | 3adant3 | ⊢ ( ( 𝐺  ∈  AbelOp  ∧  𝑆 : ( ℂ  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ( ( 1 𝑆 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑆 𝑥 )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑆 𝑥 )  =  ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) )  →  ( 𝐺  ∈  V  ∧  𝑆  ∈  V ) ) | 
						
							| 17 | 1 | isvclem | ⊢ ( ( 𝐺  ∈  V  ∧  𝑆  ∈  V )  →  ( 〈 𝐺 ,  𝑆 〉  ∈  CVecOLD  ↔  ( 𝐺  ∈  AbelOp  ∧  𝑆 : ( ℂ  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ( ( 1 𝑆 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑆 𝑥 )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑆 𝑥 )  =  ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) ) | 
						
							| 18 | 2 16 17 | pm5.21nii | ⊢ ( 〈 𝐺 ,  𝑆 〉  ∈  CVecOLD  ↔  ( 𝐺  ∈  AbelOp  ∧  𝑆 : ( ℂ  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ( ( 1 𝑆 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑆 𝑥 )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑆 𝑥 )  =  ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) |