| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isvclem.1 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 2 |  | df-vc | ⊢ CVecOLD  =  { 〈 𝑔 ,  𝑠 〉  ∣  ( 𝑔  ∈  AbelOp  ∧  𝑠 : ( ℂ  ×  ran  𝑔 ) ⟶ ran  𝑔  ∧  ∀ 𝑥  ∈  ran  𝑔 ( ( 1 𝑠 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  ran  𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) } | 
						
							| 3 | 2 | eleq2i | ⊢ ( 〈 𝐺 ,  𝑆 〉  ∈  CVecOLD  ↔  〈 𝐺 ,  𝑆 〉  ∈  { 〈 𝑔 ,  𝑠 〉  ∣  ( 𝑔  ∈  AbelOp  ∧  𝑠 : ( ℂ  ×  ran  𝑔 ) ⟶ ran  𝑔  ∧  ∀ 𝑥  ∈  ran  𝑔 ( ( 1 𝑠 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  ran  𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) } ) | 
						
							| 4 |  | eleq1 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑔  ∈  AbelOp  ↔  𝐺  ∈  AbelOp ) ) | 
						
							| 5 |  | rneq | ⊢ ( 𝑔  =  𝐺  →  ran  𝑔  =  ran  𝐺 ) | 
						
							| 6 | 5 1 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ran  𝑔  =  𝑋 ) | 
						
							| 7 |  | xpeq2 | ⊢ ( ran  𝑔  =  𝑋  →  ( ℂ  ×  ran  𝑔 )  =  ( ℂ  ×  𝑋 ) ) | 
						
							| 8 | 7 | feq2d | ⊢ ( ran  𝑔  =  𝑋  →  ( 𝑠 : ( ℂ  ×  ran  𝑔 ) ⟶ ran  𝑔  ↔  𝑠 : ( ℂ  ×  𝑋 ) ⟶ ran  𝑔 ) ) | 
						
							| 9 |  | feq3 | ⊢ ( ran  𝑔  =  𝑋  →  ( 𝑠 : ( ℂ  ×  𝑋 ) ⟶ ran  𝑔  ↔  𝑠 : ( ℂ  ×  𝑋 ) ⟶ 𝑋 ) ) | 
						
							| 10 | 8 9 | bitrd | ⊢ ( ran  𝑔  =  𝑋  →  ( 𝑠 : ( ℂ  ×  ran  𝑔 ) ⟶ ran  𝑔  ↔  𝑠 : ( ℂ  ×  𝑋 ) ⟶ 𝑋 ) ) | 
						
							| 11 | 6 10 | syl | ⊢ ( 𝑔  =  𝐺  →  ( 𝑠 : ( ℂ  ×  ran  𝑔 ) ⟶ ran  𝑔  ↔  𝑠 : ( ℂ  ×  𝑋 ) ⟶ 𝑋 ) ) | 
						
							| 12 |  | oveq | ⊢ ( 𝑔  =  𝐺  →  ( 𝑥 𝑔 𝑧 )  =  ( 𝑥 𝐺 𝑧 ) ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) )  =  ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) ) ) | 
						
							| 14 |  | oveq | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) ) ) | 
						
							| 15 | 13 14 | eqeq12d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) )  ↔  ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) ) ) ) | 
						
							| 16 | 6 15 | raleqbidv | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑧  ∈  ran  𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) )  ↔  ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) ) ) ) | 
						
							| 17 |  | oveq | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) ) ) | 
						
							| 18 | 17 | eqeq2d | ⊢ ( 𝑔  =  𝐺  →  ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) )  ↔  ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) ) ) ) | 
						
							| 19 | 18 | anbi1d | ⊢ ( 𝑔  =  𝐺  →  ( ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) )  ↔  ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) | 
						
							| 20 | 19 | ralbidv | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) )  ↔  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) | 
						
							| 21 | 16 20 | anbi12d | ⊢ ( 𝑔  =  𝐺  →  ( ( ∀ 𝑧  ∈  ran  𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) )  ↔  ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) | 
						
							| 22 | 21 | ralbidv | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  ran  𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) )  ↔  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) | 
						
							| 23 | 22 | anbi2d | ⊢ ( 𝑔  =  𝐺  →  ( ( ( 1 𝑠 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  ran  𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) )  ↔  ( ( 1 𝑠 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) ) | 
						
							| 24 | 6 23 | raleqbidv | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑥  ∈  ran  𝑔 ( ( 1 𝑠 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  ran  𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) )  ↔  ∀ 𝑥  ∈  𝑋 ( ( 1 𝑠 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) ) | 
						
							| 25 | 4 11 24 | 3anbi123d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑔  ∈  AbelOp  ∧  𝑠 : ( ℂ  ×  ran  𝑔 ) ⟶ ran  𝑔  ∧  ∀ 𝑥  ∈  ran  𝑔 ( ( 1 𝑠 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  ran  𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) )  ↔  ( 𝐺  ∈  AbelOp  ∧  𝑠 : ( ℂ  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ( ( 1 𝑠 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) ) ) | 
						
							| 26 |  | feq1 | ⊢ ( 𝑠  =  𝑆  →  ( 𝑠 : ( ℂ  ×  𝑋 ) ⟶ 𝑋  ↔  𝑆 : ( ℂ  ×  𝑋 ) ⟶ 𝑋 ) ) | 
						
							| 27 |  | oveq | ⊢ ( 𝑠  =  𝑆  →  ( 1 𝑠 𝑥 )  =  ( 1 𝑆 𝑥 ) ) | 
						
							| 28 | 27 | eqeq1d | ⊢ ( 𝑠  =  𝑆  →  ( ( 1 𝑠 𝑥 )  =  𝑥  ↔  ( 1 𝑆 𝑥 )  =  𝑥 ) ) | 
						
							| 29 |  | oveq | ⊢ ( 𝑠  =  𝑆  →  ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) )  =  ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) ) | 
						
							| 30 |  | oveq | ⊢ ( 𝑠  =  𝑆  →  ( 𝑦 𝑠 𝑥 )  =  ( 𝑦 𝑆 𝑥 ) ) | 
						
							| 31 |  | oveq | ⊢ ( 𝑠  =  𝑆  →  ( 𝑦 𝑠 𝑧 )  =  ( 𝑦 𝑆 𝑧 ) ) | 
						
							| 32 | 30 31 | oveq12d | ⊢ ( 𝑠  =  𝑆  →  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ) | 
						
							| 33 | 29 32 | eqeq12d | ⊢ ( 𝑠  =  𝑆  →  ( ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) )  ↔  ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ) ) | 
						
							| 34 | 33 | ralbidv | ⊢ ( 𝑠  =  𝑆  →  ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) )  ↔  ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ) ) | 
						
							| 35 |  | oveq | ⊢ ( 𝑠  =  𝑆  →  ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦  +  𝑧 ) 𝑆 𝑥 ) ) | 
						
							| 36 |  | oveq | ⊢ ( 𝑠  =  𝑆  →  ( 𝑧 𝑠 𝑥 )  =  ( 𝑧 𝑆 𝑥 ) ) | 
						
							| 37 | 30 36 | oveq12d | ⊢ ( 𝑠  =  𝑆  →  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ) | 
						
							| 38 | 35 37 | eqeq12d | ⊢ ( 𝑠  =  𝑆  →  ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) )  ↔  ( ( 𝑦  +  𝑧 ) 𝑆 𝑥 )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ) ) | 
						
							| 39 |  | oveq | ⊢ ( 𝑠  =  𝑆  →  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦  ·  𝑧 ) 𝑆 𝑥 ) ) | 
						
							| 40 |  | oveq | ⊢ ( 𝑠  =  𝑆  →  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) )  =  ( 𝑦 𝑆 ( 𝑧 𝑠 𝑥 ) ) ) | 
						
							| 41 | 36 | oveq2d | ⊢ ( 𝑠  =  𝑆  →  ( 𝑦 𝑆 ( 𝑧 𝑠 𝑥 ) )  =  ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) | 
						
							| 42 | 40 41 | eqtrd | ⊢ ( 𝑠  =  𝑆  →  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) )  =  ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) | 
						
							| 43 | 39 42 | eqeq12d | ⊢ ( 𝑠  =  𝑆  →  ( ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) )  ↔  ( ( 𝑦  ·  𝑧 ) 𝑆 𝑥 )  =  ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) | 
						
							| 44 | 38 43 | anbi12d | ⊢ ( 𝑠  =  𝑆  →  ( ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) )  ↔  ( ( ( 𝑦  +  𝑧 ) 𝑆 𝑥 )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑆 𝑥 )  =  ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) | 
						
							| 45 | 44 | ralbidv | ⊢ ( 𝑠  =  𝑆  →  ( ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) )  ↔  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑆 𝑥 )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑆 𝑥 )  =  ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) | 
						
							| 46 | 34 45 | anbi12d | ⊢ ( 𝑠  =  𝑆  →  ( ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) )  ↔  ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑆 𝑥 )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑆 𝑥 )  =  ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) | 
						
							| 47 | 46 | ralbidv | ⊢ ( 𝑠  =  𝑆  →  ( ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) )  ↔  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑆 𝑥 )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑆 𝑥 )  =  ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) | 
						
							| 48 | 28 47 | anbi12d | ⊢ ( 𝑠  =  𝑆  →  ( ( ( 1 𝑠 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) )  ↔  ( ( 1 𝑆 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑆 𝑥 )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑆 𝑥 )  =  ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) | 
						
							| 49 | 48 | ralbidv | ⊢ ( 𝑠  =  𝑆  →  ( ∀ 𝑥  ∈  𝑋 ( ( 1 𝑠 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) )  ↔  ∀ 𝑥  ∈  𝑋 ( ( 1 𝑆 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑆 𝑥 )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑆 𝑥 )  =  ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) | 
						
							| 50 | 26 49 | 3anbi23d | ⊢ ( 𝑠  =  𝑆  →  ( ( 𝐺  ∈  AbelOp  ∧  𝑠 : ( ℂ  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ( ( 1 𝑠 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑠 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑦 𝑠 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝐺 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) )  ↔  ( 𝐺  ∈  AbelOp  ∧  𝑆 : ( ℂ  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ( ( 1 𝑆 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑆 𝑥 )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑆 𝑥 )  =  ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) ) | 
						
							| 51 | 25 50 | opelopabg | ⊢ ( ( 𝐺  ∈  V  ∧  𝑆  ∈  V )  →  ( 〈 𝐺 ,  𝑆 〉  ∈  { 〈 𝑔 ,  𝑠 〉  ∣  ( 𝑔  ∈  AbelOp  ∧  𝑠 : ( ℂ  ×  ran  𝑔 ) ⟶ ran  𝑔  ∧  ∀ 𝑥  ∈  ran  𝑔 ( ( 1 𝑠 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  ran  𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) )  =  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑠 𝑥 )  =  ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑠 𝑥 )  =  ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) }  ↔  ( 𝐺  ∈  AbelOp  ∧  𝑆 : ( ℂ  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ( ( 1 𝑆 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑆 𝑥 )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑆 𝑥 )  =  ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) ) | 
						
							| 52 | 3 51 | bitrid | ⊢ ( ( 𝐺  ∈  V  ∧  𝑆  ∈  V )  →  ( 〈 𝐺 ,  𝑆 〉  ∈  CVecOLD  ↔  ( 𝐺  ∈  AbelOp  ∧  𝑆 : ( ℂ  ×  𝑋 ) ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ( ( 1 𝑆 𝑥 )  =  𝑥  ∧  ∀ 𝑦  ∈  ℂ ( ∀ 𝑧  ∈  𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) )  ∧  ∀ 𝑧  ∈  ℂ ( ( ( 𝑦  +  𝑧 ) 𝑆 𝑥 )  =  ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) )  ∧  ( ( 𝑦  ·  𝑧 ) 𝑆 𝑥 )  =  ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) ) |