Metamath Proof Explorer


Theorem iswatN

Description: The predicate "is a W atom" (corresponding to fiducial atom D ). (Contributed by NM, 26-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses watomfval.a 𝐴 = ( Atoms ‘ 𝐾 )
watomfval.p 𝑃 = ( ⊥𝑃𝐾 )
watomfval.w 𝑊 = ( WAtoms ‘ 𝐾 )
Assertion iswatN ( ( 𝐾𝐵𝐷𝐴 ) → ( 𝑃 ∈ ( 𝑊𝐷 ) ↔ ( 𝑃𝐴 ∧ ¬ 𝑃 ∈ ( ( ⊥𝑃𝐾 ) ‘ { 𝐷 } ) ) ) )

Proof

Step Hyp Ref Expression
1 watomfval.a 𝐴 = ( Atoms ‘ 𝐾 )
2 watomfval.p 𝑃 = ( ⊥𝑃𝐾 )
3 watomfval.w 𝑊 = ( WAtoms ‘ 𝐾 )
4 1 2 3 watvalN ( ( 𝐾𝐵𝐷𝐴 ) → ( 𝑊𝐷 ) = ( 𝐴 ∖ ( ( ⊥𝑃𝐾 ) ‘ { 𝐷 } ) ) )
5 4 eleq2d ( ( 𝐾𝐵𝐷𝐴 ) → ( 𝑃 ∈ ( 𝑊𝐷 ) ↔ 𝑃 ∈ ( 𝐴 ∖ ( ( ⊥𝑃𝐾 ) ‘ { 𝐷 } ) ) ) )
6 eldif ( 𝑃 ∈ ( 𝐴 ∖ ( ( ⊥𝑃𝐾 ) ‘ { 𝐷 } ) ) ↔ ( 𝑃𝐴 ∧ ¬ 𝑃 ∈ ( ( ⊥𝑃𝐾 ) ‘ { 𝐷 } ) ) )
7 5 6 bitrdi ( ( 𝐾𝐵𝐷𝐴 ) → ( 𝑃 ∈ ( 𝑊𝐷 ) ↔ ( 𝑃𝐴 ∧ ¬ 𝑃 ∈ ( ( ⊥𝑃𝐾 ) ‘ { 𝐷 } ) ) ) )