Description: The predicate "is a W atom" (corresponding to fiducial atom D ). (Contributed by NM, 26-Jan-2012) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | watomfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
watomfval.p | ⊢ 𝑃 = ( ⊥𝑃 ‘ 𝐾 ) | ||
watomfval.w | ⊢ 𝑊 = ( WAtoms ‘ 𝐾 ) | ||
Assertion | iswatN | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴 ) → ( 𝑃 ∈ ( 𝑊 ‘ 𝐷 ) ↔ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ∈ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝐷 } ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | watomfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
2 | watomfval.p | ⊢ 𝑃 = ( ⊥𝑃 ‘ 𝐾 ) | |
3 | watomfval.w | ⊢ 𝑊 = ( WAtoms ‘ 𝐾 ) | |
4 | 1 2 3 | watvalN | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴 ) → ( 𝑊 ‘ 𝐷 ) = ( 𝐴 ∖ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝐷 } ) ) ) |
5 | 4 | eleq2d | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴 ) → ( 𝑃 ∈ ( 𝑊 ‘ 𝐷 ) ↔ 𝑃 ∈ ( 𝐴 ∖ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝐷 } ) ) ) ) |
6 | eldif | ⊢ ( 𝑃 ∈ ( 𝐴 ∖ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝐷 } ) ) ↔ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ∈ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝐷 } ) ) ) | |
7 | 5 6 | bitrdi | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴 ) → ( 𝑃 ∈ ( 𝑊 ‘ 𝐷 ) ↔ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ∈ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ { 𝐷 } ) ) ) ) |