Step |
Hyp |
Ref |
Expression |
1 |
|
wksfval.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
wksfval.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
df-br |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ 〈 𝐹 , 𝑃 〉 ∈ ( Walks ‘ 𝐺 ) ) |
4 |
1 2
|
wksfval |
⊢ ( 𝐺 ∈ 𝑊 → ( Walks ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) } , { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍 ) → ( Walks ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) } , { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } ) |
6 |
5
|
eleq2d |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍 ) → ( 〈 𝐹 , 𝑃 〉 ∈ ( Walks ‘ 𝐺 ) ↔ 〈 𝐹 , 𝑃 〉 ∈ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) } , { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } ) ) |
7 |
3 6
|
syl5bb |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍 ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ 〈 𝐹 , 𝑃 〉 ∈ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) } , { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } ) ) |
8 |
|
eleq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ∈ Word dom 𝐼 ↔ 𝐹 ∈ Word dom 𝐼 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝑓 ∈ Word dom 𝐼 ↔ 𝐹 ∈ Word dom 𝐼 ) ) |
10 |
|
simpr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → 𝑝 = 𝑃 ) |
11 |
|
fveq2 |
⊢ ( 𝑓 = 𝐹 → ( ♯ ‘ 𝑓 ) = ( ♯ ‘ 𝐹 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑓 = 𝐹 → ( 0 ... ( ♯ ‘ 𝑓 ) ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 0 ... ( ♯ ‘ 𝑓 ) ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
14 |
10 13
|
feq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
15 |
11
|
oveq2d |
⊢ ( 𝑓 = 𝐹 → ( 0 ..^ ( ♯ ‘ 𝑓 ) ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 0 ..^ ( ♯ ‘ 𝑓 ) ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
17 |
|
fveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ) |
18 |
|
fveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
19 |
17 18
|
eqeq12d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
21 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
22 |
21
|
fveq2d |
⊢ ( 𝑓 = 𝐹 → ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
23 |
17
|
sneqd |
⊢ ( 𝑝 = 𝑃 → { ( 𝑝 ‘ 𝑘 ) } = { ( 𝑃 ‘ 𝑘 ) } ) |
24 |
22 23
|
eqeqan12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ) |
25 |
17 18
|
preq12d |
⊢ ( 𝑝 = 𝑃 → { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) |
26 |
25
|
adantl |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) |
27 |
22
|
adantr |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
28 |
26 27
|
sseq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ↔ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
29 |
20 24 28
|
ifpbi123d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( if- ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) } , { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
30 |
16 29
|
raleqbidv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) } , { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
31 |
9 14 30
|
3anbi123d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) } , { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
32 |
31
|
opelopabga |
⊢ ( ( 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍 ) → ( 〈 𝐹 , 𝑃 〉 ∈ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) } , { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
33 |
32
|
3adant1 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍 ) → ( 〈 𝐹 , 𝑃 〉 ∈ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝 ‘ 𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) } , { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
34 |
7 33
|
bitrd |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍 ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |