Step |
Hyp |
Ref |
Expression |
1 |
|
df-word |
⊢ Word 𝑆 = { 𝑤 ∣ ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 } |
2 |
1
|
eleq2i |
⊢ ( 𝑊 ∈ Word 𝑆 ↔ 𝑊 ∈ { 𝑤 ∣ ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 } ) |
3 |
|
ovex |
⊢ ( 0 ..^ 𝑙 ) ∈ V |
4 |
|
fex |
⊢ ( ( 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ∧ ( 0 ..^ 𝑙 ) ∈ V ) → 𝑊 ∈ V ) |
5 |
3 4
|
mpan2 |
⊢ ( 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 → 𝑊 ∈ V ) |
6 |
5
|
rexlimivw |
⊢ ( ∃ 𝑙 ∈ ℕ0 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 → 𝑊 ∈ V ) |
7 |
|
feq1 |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ↔ 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) ) |
8 |
7
|
rexbidv |
⊢ ( 𝑤 = 𝑊 → ( ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ↔ ∃ 𝑙 ∈ ℕ0 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) ) |
9 |
6 8
|
elab3 |
⊢ ( 𝑊 ∈ { 𝑤 ∣ ∃ 𝑙 ∈ ℕ0 𝑤 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 } ↔ ∃ 𝑙 ∈ ℕ0 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) |
10 |
2 9
|
bitri |
⊢ ( 𝑊 ∈ Word 𝑆 ↔ ∃ 𝑙 ∈ ℕ0 𝑊 : ( 0 ..^ 𝑙 ) ⟶ 𝑆 ) |