Metamath Proof Explorer


Theorem iswrddm0

Description: A function with empty domain is a word. (Contributed by AV, 13-Oct-2018)

Ref Expression
Assertion iswrddm0 ( 𝑊 : ∅ ⟶ 𝑆𝑊 ∈ Word 𝑆 )

Proof

Step Hyp Ref Expression
1 fzo0 ( 0 ..^ 0 ) = ∅
2 1 feq2i ( 𝑊 : ( 0 ..^ 0 ) ⟶ 𝑆𝑊 : ∅ ⟶ 𝑆 )
3 iswrdi ( 𝑊 : ( 0 ..^ 0 ) ⟶ 𝑆𝑊 ∈ Word 𝑆 )
4 2 3 sylbir ( 𝑊 : ∅ ⟶ 𝑆𝑊 ∈ Word 𝑆 )