Metamath Proof Explorer


Theorem iswspthn

Description: An element of the set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 11-May-2021)

Ref Expression
Assertion iswspthn ( 𝑊 ∈ ( 𝑁 WSPathsN 𝐺 ) ↔ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) )

Proof

Step Hyp Ref Expression
1 breq2 ( 𝑤 = 𝑊 → ( 𝑓 ( SPaths ‘ 𝐺 ) 𝑤𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) )
2 1 exbidv ( 𝑤 = 𝑊 → ( ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 ↔ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) )
3 wspthsn ( 𝑁 WSPathsN 𝐺 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑤 }
4 2 3 elrab2 ( 𝑊 ∈ ( 𝑁 WSPathsN 𝐺 ) ↔ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ∃ 𝑓 𝑓 ( SPaths ‘ 𝐺 ) 𝑊 ) )