| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iswspthsnon.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | 0ov | ⊢ ( 𝐴 ∅ 𝐵 )  =  ∅ | 
						
							| 3 |  | df-wspthsnon | ⊢  WSPathsNOn   =  ( 𝑛  ∈  ℕ0 ,  𝑔  ∈  V  ↦  ( 𝑎  ∈  ( Vtx ‘ 𝑔 ) ,  𝑏  ∈  ( Vtx ‘ 𝑔 )  ↦  { 𝑤  ∈  ( 𝑎 ( 𝑛  WWalksNOn  𝑔 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 } ) ) | 
						
							| 4 | 3 | mpondm0 | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( 𝑁  WSPathsNOn  𝐺 )  =  ∅ ) | 
						
							| 5 | 4 | oveqd | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  =  ( 𝐴 ∅ 𝐵 ) ) | 
						
							| 6 |  | id | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V ) ) | 
						
							| 7 | 6 | intnanrd | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ¬  ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) ) ) | 
						
							| 8 | 1 | wwlksnon0 | ⊢ ( ¬  ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  =  ∅ ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  =  ∅ ) | 
						
							| 10 | 9 | rabeqdv | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  { 𝑤  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∣  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 }  =  { 𝑤  ∈  ∅  ∣  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 } ) | 
						
							| 11 |  | rab0 | ⊢ { 𝑤  ∈  ∅  ∣  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 }  =  ∅ | 
						
							| 12 | 10 11 | eqtrdi | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  { 𝑤  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∣  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 }  =  ∅ ) | 
						
							| 13 | 2 5 12 | 3eqtr4a | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  =  { 𝑤  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∣  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 } ) | 
						
							| 14 | 1 | wspthsnon | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( 𝑁  WSPathsNOn  𝐺 )  =  ( 𝑎  ∈  𝑉 ,  𝑏  ∈  𝑉  ↦  { 𝑤  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  ( 𝑁  WSPathsNOn  𝐺 )  =  ( 𝑎  ∈  𝑉 ,  𝑏  ∈  𝑉  ↦  { 𝑤  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } ) ) | 
						
							| 16 | 15 | oveqd | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  =  ( 𝐴 ( 𝑎  ∈  𝑉 ,  𝑏  ∈  𝑉  ↦  { 𝑤  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } ) 𝐵 ) ) | 
						
							| 17 |  | eqid | ⊢ ( 𝑎  ∈  𝑉 ,  𝑏  ∈  𝑉  ↦  { 𝑤  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } )  =  ( 𝑎  ∈  𝑉 ,  𝑏  ∈  𝑉  ↦  { 𝑤  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } ) | 
						
							| 18 | 17 | mpondm0 | ⊢ ( ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴 ( 𝑎  ∈  𝑉 ,  𝑏  ∈  𝑉  ↦  { 𝑤  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } ) 𝐵 )  =  ∅ ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  ( 𝐴 ( 𝑎  ∈  𝑉 ,  𝑏  ∈  𝑉  ↦  { 𝑤  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } ) 𝐵 )  =  ∅ ) | 
						
							| 20 | 16 19 | eqtrd | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  =  ∅ ) | 
						
							| 21 | 20 | ex | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  =  ∅ ) ) | 
						
							| 22 | 5 2 | eqtrdi | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  =  ∅ ) | 
						
							| 23 | 22 | a1d | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  =  ∅ ) ) | 
						
							| 24 | 21 23 | pm2.61i | ⊢ ( ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  =  ∅ ) | 
						
							| 25 | 1 | wwlksonvtx | ⊢ ( 𝑤  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  →  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) ) | 
						
							| 26 | 25 | pm2.24d | ⊢ ( 𝑤  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  →  ( ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ¬  𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) ) | 
						
							| 27 | 26 | impcom | ⊢ ( ( ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑤  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 ) )  →  ¬  𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) | 
						
							| 28 | 27 | nexdv | ⊢ ( ( ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  𝑤  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 ) )  →  ¬  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) | 
						
							| 29 | 28 | ralrimiva | ⊢ ( ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ∀ 𝑤  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 ) ¬  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) | 
						
							| 30 |  | rabeq0 | ⊢ ( { 𝑤  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∣  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 }  =  ∅  ↔  ∀ 𝑤  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 ) ¬  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) | 
						
							| 31 | 29 30 | sylibr | ⊢ ( ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  { 𝑤  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∣  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 }  =  ∅ ) | 
						
							| 32 | 24 31 | eqtr4d | ⊢ ( ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  =  { 𝑤  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∣  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 } ) | 
						
							| 33 | 14 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  ( 𝑁  WSPathsNOn  𝐺 )  =  ( 𝑎  ∈  𝑉 ,  𝑏  ∈  𝑉  ↦  { 𝑤  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } ) ) | 
						
							| 34 |  | oveq12 | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  =  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 ) ) | 
						
							| 35 |  | oveq12 | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 )  =  ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) ) | 
						
							| 36 | 35 | breqd | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤  ↔  𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) ) | 
						
							| 37 | 36 | exbidv | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤  ↔  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 ) ) | 
						
							| 38 | 34 37 | rabeqbidv | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  { 𝑤  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 }  =  { 𝑤  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∣  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 } ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  ∧  ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 ) )  →  { 𝑤  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 }  =  { 𝑤  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∣  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 } ) | 
						
							| 40 |  | simprl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 41 |  | simprr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  𝐵  ∈  𝑉 ) | 
						
							| 42 |  | ovex | ⊢ ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∈  V | 
						
							| 43 | 42 | rabex | ⊢ { 𝑤  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∣  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 }  ∈  V | 
						
							| 44 | 43 | a1i | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  { 𝑤  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∣  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 }  ∈  V ) | 
						
							| 45 | 33 39 40 41 44 | ovmpod | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  =  { 𝑤  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∣  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 } ) | 
						
							| 46 | 13 32 45 | ecase | ⊢ ( 𝐴 ( 𝑁  WSPathsNOn  𝐺 ) 𝐵 )  =  { 𝑤  ∈  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  ∣  ∃ 𝑓 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐵 ) 𝑤 } |