| Step | Hyp | Ref | Expression | 
						
							| 1 |  | treq | ⊢ ( 𝑢  =  𝑈  →  ( Tr  𝑢  ↔  Tr  𝑈 ) ) | 
						
							| 2 |  | neeq1 | ⊢ ( 𝑢  =  𝑈  →  ( 𝑢  ≠  ∅  ↔  𝑈  ≠  ∅ ) ) | 
						
							| 3 |  | eleq2 | ⊢ ( 𝑢  =  𝑈  →  ( ∪  𝑥  ∈  𝑢  ↔  ∪  𝑥  ∈  𝑈 ) ) | 
						
							| 4 |  | eleq2 | ⊢ ( 𝑢  =  𝑈  →  ( 𝒫  𝑥  ∈  𝑢  ↔  𝒫  𝑥  ∈  𝑈 ) ) | 
						
							| 5 |  | eleq2 | ⊢ ( 𝑢  =  𝑈  →  ( { 𝑥 ,  𝑦 }  ∈  𝑢  ↔  { 𝑥 ,  𝑦 }  ∈  𝑈 ) ) | 
						
							| 6 | 5 | raleqbi1dv | ⊢ ( 𝑢  =  𝑈  →  ( ∀ 𝑦  ∈  𝑢 { 𝑥 ,  𝑦 }  ∈  𝑢  ↔  ∀ 𝑦  ∈  𝑈 { 𝑥 ,  𝑦 }  ∈  𝑈 ) ) | 
						
							| 7 | 3 4 6 | 3anbi123d | ⊢ ( 𝑢  =  𝑈  →  ( ( ∪  𝑥  ∈  𝑢  ∧  𝒫  𝑥  ∈  𝑢  ∧  ∀ 𝑦  ∈  𝑢 { 𝑥 ,  𝑦 }  ∈  𝑢 )  ↔  ( ∪  𝑥  ∈  𝑈  ∧  𝒫  𝑥  ∈  𝑈  ∧  ∀ 𝑦  ∈  𝑈 { 𝑥 ,  𝑦 }  ∈  𝑈 ) ) ) | 
						
							| 8 | 7 | raleqbi1dv | ⊢ ( 𝑢  =  𝑈  →  ( ∀ 𝑥  ∈  𝑢 ( ∪  𝑥  ∈  𝑢  ∧  𝒫  𝑥  ∈  𝑢  ∧  ∀ 𝑦  ∈  𝑢 { 𝑥 ,  𝑦 }  ∈  𝑢 )  ↔  ∀ 𝑥  ∈  𝑈 ( ∪  𝑥  ∈  𝑈  ∧  𝒫  𝑥  ∈  𝑈  ∧  ∀ 𝑦  ∈  𝑈 { 𝑥 ,  𝑦 }  ∈  𝑈 ) ) ) | 
						
							| 9 | 1 2 8 | 3anbi123d | ⊢ ( 𝑢  =  𝑈  →  ( ( Tr  𝑢  ∧  𝑢  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑢 ( ∪  𝑥  ∈  𝑢  ∧  𝒫  𝑥  ∈  𝑢  ∧  ∀ 𝑦  ∈  𝑢 { 𝑥 ,  𝑦 }  ∈  𝑢 ) )  ↔  ( Tr  𝑈  ∧  𝑈  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑈 ( ∪  𝑥  ∈  𝑈  ∧  𝒫  𝑥  ∈  𝑈  ∧  ∀ 𝑦  ∈  𝑈 { 𝑥 ,  𝑦 }  ∈  𝑈 ) ) ) ) | 
						
							| 10 |  | df-wun | ⊢ WUni  =  { 𝑢  ∣  ( Tr  𝑢  ∧  𝑢  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑢 ( ∪  𝑥  ∈  𝑢  ∧  𝒫  𝑥  ∈  𝑢  ∧  ∀ 𝑦  ∈  𝑢 { 𝑥 ,  𝑦 }  ∈  𝑢 ) ) } | 
						
							| 11 | 9 10 | elab2g | ⊢ ( 𝑈  ∈  𝑉  →  ( 𝑈  ∈  WUni  ↔  ( Tr  𝑈  ∧  𝑈  ≠  ∅  ∧  ∀ 𝑥  ∈  𝑈 ( ∪  𝑥  ∈  𝑈  ∧  𝒫  𝑥  ∈  𝑈  ∧  ∀ 𝑦  ∈  𝑈 { 𝑥 ,  𝑦 }  ∈  𝑈 ) ) ) ) |