Metamath Proof Explorer


Theorem iswun

Description: Properties of a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion iswun ( 𝑈𝑉 → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈𝑈 ≠ ∅ ∧ ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) )

Proof

Step Hyp Ref Expression
1 treq ( 𝑧 = 𝑤 → ( Tr 𝑧 ↔ Tr 𝑤 ) )
2 neeq1 ( 𝑧 = 𝑤 → ( 𝑧 ≠ ∅ ↔ 𝑤 ≠ ∅ ) )
3 eleq2 ( 𝑧 = 𝑤 → ( 𝑥𝑧 𝑥𝑤 ) )
4 eleq2 ( 𝑧 = 𝑤 → ( 𝒫 𝑥𝑧 ↔ 𝒫 𝑥𝑤 ) )
5 eleq2 ( 𝑧 = 𝑤 → ( { 𝑥 , 𝑦 } ∈ 𝑧 ↔ { 𝑥 , 𝑦 } ∈ 𝑤 ) )
6 5 raleqbi1dv ( 𝑧 = 𝑤 → ( ∀ 𝑦𝑧 { 𝑥 , 𝑦 } ∈ 𝑧 ↔ ∀ 𝑦𝑤 { 𝑥 , 𝑦 } ∈ 𝑤 ) )
7 3 4 6 3anbi123d ( 𝑧 = 𝑤 → ( ( 𝑥𝑧 ∧ 𝒫 𝑥𝑧 ∧ ∀ 𝑦𝑧 { 𝑥 , 𝑦 } ∈ 𝑧 ) ↔ ( 𝑥𝑤 ∧ 𝒫 𝑥𝑤 ∧ ∀ 𝑦𝑤 { 𝑥 , 𝑦 } ∈ 𝑤 ) ) )
8 7 raleqbi1dv ( 𝑧 = 𝑤 → ( ∀ 𝑥𝑧 ( 𝑥𝑧 ∧ 𝒫 𝑥𝑧 ∧ ∀ 𝑦𝑧 { 𝑥 , 𝑦 } ∈ 𝑧 ) ↔ ∀ 𝑥𝑤 ( 𝑥𝑤 ∧ 𝒫 𝑥𝑤 ∧ ∀ 𝑦𝑤 { 𝑥 , 𝑦 } ∈ 𝑤 ) ) )
9 1 2 8 3anbi123d ( 𝑧 = 𝑤 → ( ( Tr 𝑧𝑧 ≠ ∅ ∧ ∀ 𝑥𝑧 ( 𝑥𝑧 ∧ 𝒫 𝑥𝑧 ∧ ∀ 𝑦𝑧 { 𝑥 , 𝑦 } ∈ 𝑧 ) ) ↔ ( Tr 𝑤𝑤 ≠ ∅ ∧ ∀ 𝑥𝑤 ( 𝑥𝑤 ∧ 𝒫 𝑥𝑤 ∧ ∀ 𝑦𝑤 { 𝑥 , 𝑦 } ∈ 𝑤 ) ) ) )
10 treq ( 𝑤 = 𝑈 → ( Tr 𝑤 ↔ Tr 𝑈 ) )
11 neeq1 ( 𝑤 = 𝑈 → ( 𝑤 ≠ ∅ ↔ 𝑈 ≠ ∅ ) )
12 eleq2 ( 𝑤 = 𝑈 → ( 𝑥𝑤 𝑥𝑈 ) )
13 eleq2 ( 𝑤 = 𝑈 → ( 𝒫 𝑥𝑤 ↔ 𝒫 𝑥𝑈 ) )
14 eleq2 ( 𝑤 = 𝑈 → ( { 𝑥 , 𝑦 } ∈ 𝑤 ↔ { 𝑥 , 𝑦 } ∈ 𝑈 ) )
15 14 raleqbi1dv ( 𝑤 = 𝑈 → ( ∀ 𝑦𝑤 { 𝑥 , 𝑦 } ∈ 𝑤 ↔ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) )
16 12 13 15 3anbi123d ( 𝑤 = 𝑈 → ( ( 𝑥𝑤 ∧ 𝒫 𝑥𝑤 ∧ ∀ 𝑦𝑤 { 𝑥 , 𝑦 } ∈ 𝑤 ) ↔ ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) )
17 16 raleqbi1dv ( 𝑤 = 𝑈 → ( ∀ 𝑥𝑤 ( 𝑥𝑤 ∧ 𝒫 𝑥𝑤 ∧ ∀ 𝑦𝑤 { 𝑥 , 𝑦 } ∈ 𝑤 ) ↔ ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) )
18 10 11 17 3anbi123d ( 𝑤 = 𝑈 → ( ( Tr 𝑤𝑤 ≠ ∅ ∧ ∀ 𝑥𝑤 ( 𝑥𝑤 ∧ 𝒫 𝑥𝑤 ∧ ∀ 𝑦𝑤 { 𝑥 , 𝑦 } ∈ 𝑤 ) ) ↔ ( Tr 𝑈𝑈 ≠ ∅ ∧ ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) )
19 df-wun WUni = { 𝑧 ∣ ( Tr 𝑧𝑧 ≠ ∅ ∧ ∀ 𝑥𝑧 ( 𝑥𝑧 ∧ 𝒫 𝑥𝑧 ∧ ∀ 𝑦𝑧 { 𝑥 , 𝑦 } ∈ 𝑧 ) ) }
20 9 18 19 elab2gw ( 𝑈𝑉 → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈𝑈 ≠ ∅ ∧ ∀ 𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) )