Step |
Hyp |
Ref |
Expression |
1 |
|
treq |
⊢ ( 𝑢 = 𝑈 → ( Tr 𝑢 ↔ Tr 𝑈 ) ) |
2 |
|
neeq1 |
⊢ ( 𝑢 = 𝑈 → ( 𝑢 ≠ ∅ ↔ 𝑈 ≠ ∅ ) ) |
3 |
|
eleq2 |
⊢ ( 𝑢 = 𝑈 → ( ∪ 𝑥 ∈ 𝑢 ↔ ∪ 𝑥 ∈ 𝑈 ) ) |
4 |
|
eleq2 |
⊢ ( 𝑢 = 𝑈 → ( 𝒫 𝑥 ∈ 𝑢 ↔ 𝒫 𝑥 ∈ 𝑈 ) ) |
5 |
|
eleq2 |
⊢ ( 𝑢 = 𝑈 → ( { 𝑥 , 𝑦 } ∈ 𝑢 ↔ { 𝑥 , 𝑦 } ∈ 𝑈 ) ) |
6 |
5
|
raleqbi1dv |
⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ↔ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) |
7 |
3 4 6
|
3anbi123d |
⊢ ( 𝑢 = 𝑈 → ( ( ∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ↔ ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) |
8 |
7
|
raleqbi1dv |
⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑥 ∈ 𝑢 ( ∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ↔ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) |
9 |
1 2 8
|
3anbi123d |
⊢ ( 𝑢 = 𝑈 → ( ( Tr 𝑢 ∧ 𝑢 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑢 ( ∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ) ↔ ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) ) |
10 |
|
df-wun |
⊢ WUni = { 𝑢 ∣ ( Tr 𝑢 ∧ 𝑢 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑢 ( ∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀ 𝑦 ∈ 𝑢 { 𝑥 , 𝑦 } ∈ 𝑢 ) ) } |
11 |
9 10
|
elab2g |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) ) |