| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksn | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  WWalksN  𝐺 )  =  { 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) } ) | 
						
							| 2 | 1 | eleq2d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ↔  𝑊  ∈  { 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) } ) ) | 
						
							| 3 |  | fveqeq2 | ⊢ ( 𝑤  =  𝑊  →  ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  ↔  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 4 | 3 | elrab | ⊢ ( 𝑊  ∈  { 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) }  ↔  ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 5 | 2 4 | bitrdi | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ↔  ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) ) ) |