Step |
Hyp |
Ref |
Expression |
1 |
|
iswwlksnon.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
0ov |
⊢ ( 𝐴 ∅ 𝐵 ) = ∅ |
3 |
|
df-wwlksnon |
⊢ WWalksNOn = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑛 ) = 𝑏 ) } ) ) |
4 |
3
|
mpondm0 |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑁 WWalksNOn 𝐺 ) = ∅ ) |
5 |
4
|
oveqd |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) = ( 𝐴 ∅ 𝐵 ) ) |
6 |
|
df-wwlksn |
⊢ WWalksN = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ { 𝑤 ∈ ( WWalks ‘ 𝑔 ) ∣ ( ♯ ‘ 𝑤 ) = ( 𝑛 + 1 ) } ) |
7 |
6
|
mpondm0 |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑁 WWalksN 𝐺 ) = ∅ ) |
8 |
7
|
rabeqdv |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) } = { 𝑤 ∈ ∅ ∣ ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) } ) |
9 |
|
rab0 |
⊢ { 𝑤 ∈ ∅ ∣ ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) } = ∅ |
10 |
8 9
|
eqtrdi |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) } = ∅ ) |
11 |
2 5 10
|
3eqtr4a |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) } ) |
12 |
1
|
wwlksnon |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑁 WWalksNOn 𝐺 ) = ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑁 ) = 𝑏 ) } ) ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝑁 WWalksNOn 𝐺 ) = ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑁 ) = 𝑏 ) } ) ) |
14 |
13
|
oveqd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) = ( 𝐴 ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑁 ) = 𝑏 ) } ) 𝐵 ) ) |
15 |
|
eqid |
⊢ ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑁 ) = 𝑏 ) } ) = ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑁 ) = 𝑏 ) } ) |
16 |
15
|
mpondm0 |
⊢ ( ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑁 ) = 𝑏 ) } ) 𝐵 ) = ∅ ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐴 ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑁 ) = 𝑏 ) } ) 𝐵 ) = ∅ ) |
18 |
14 17
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) = ∅ ) |
19 |
18
|
ex |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) = ∅ ) ) |
20 |
5 2
|
eqtrdi |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) = ∅ ) |
21 |
20
|
a1d |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) = ∅ ) ) |
22 |
19 21
|
pm2.61i |
⊢ ( ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) = ∅ ) |
23 |
1
|
wwlknllvtx |
⊢ ( 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( 𝑤 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑤 ‘ 𝑁 ) ∈ 𝑉 ) ) |
24 |
|
eleq1 |
⊢ ( 𝐴 = ( 𝑤 ‘ 0 ) → ( 𝐴 ∈ 𝑉 ↔ ( 𝑤 ‘ 0 ) ∈ 𝑉 ) ) |
25 |
24
|
eqcoms |
⊢ ( ( 𝑤 ‘ 0 ) = 𝐴 → ( 𝐴 ∈ 𝑉 ↔ ( 𝑤 ‘ 0 ) ∈ 𝑉 ) ) |
26 |
|
eleq1 |
⊢ ( 𝐵 = ( 𝑤 ‘ 𝑁 ) → ( 𝐵 ∈ 𝑉 ↔ ( 𝑤 ‘ 𝑁 ) ∈ 𝑉 ) ) |
27 |
26
|
eqcoms |
⊢ ( ( 𝑤 ‘ 𝑁 ) = 𝐵 → ( 𝐵 ∈ 𝑉 ↔ ( 𝑤 ‘ 𝑁 ) ∈ 𝑉 ) ) |
28 |
25 27
|
bi2anan9 |
⊢ ( ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ↔ ( ( 𝑤 ‘ 0 ) ∈ 𝑉 ∧ ( 𝑤 ‘ 𝑁 ) ∈ 𝑉 ) ) ) |
29 |
23 28
|
syl5ibrcom |
⊢ ( 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) |
30 |
29
|
con3rr3 |
⊢ ( ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) → ¬ ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) ) ) |
31 |
30
|
ralrimiv |
⊢ ( ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ∀ 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ¬ ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) ) |
32 |
|
rabeq0 |
⊢ ( { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) } = ∅ ↔ ∀ 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ¬ ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) ) |
33 |
31 32
|
sylibr |
⊢ ( ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) } = ∅ ) |
34 |
22 33
|
eqtr4d |
⊢ ( ¬ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) } ) |
35 |
12
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝑁 WWalksNOn 𝐺 ) = ( 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑉 ↦ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑁 ) = 𝑏 ) } ) ) |
36 |
|
eqeq2 |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑤 ‘ 0 ) = 𝑎 ↔ ( 𝑤 ‘ 0 ) = 𝐴 ) ) |
37 |
|
eqeq2 |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑤 ‘ 𝑁 ) = 𝑏 ↔ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) ) |
38 |
36 37
|
bi2anan9 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑁 ) = 𝑏 ) ↔ ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) ) ) |
39 |
38
|
rabbidv |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑁 ) = 𝑏 ) } = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) } ) |
40 |
39
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ∧ ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ) → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤 ‘ 𝑁 ) = 𝑏 ) } = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) } ) |
41 |
|
simprl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → 𝐴 ∈ 𝑉 ) |
42 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → 𝐵 ∈ 𝑉 ) |
43 |
|
ovex |
⊢ ( 𝑁 WWalksN 𝐺 ) ∈ V |
44 |
43
|
rabex |
⊢ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) } ∈ V |
45 |
44
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) } ∈ V ) |
46 |
35 40 41 42 45
|
ovmpod |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) } ) |
47 |
11 34 46
|
ecase |
⊢ ( 𝐴 ( 𝑁 WWalksNOn 𝐺 ) 𝐵 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝐴 ∧ ( 𝑤 ‘ 𝑁 ) = 𝐵 ) } |