| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iswwlksnon.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | 0ov | ⊢ ( 𝐴 ∅ 𝐵 )  =  ∅ | 
						
							| 3 |  | df-wwlksnon | ⊢  WWalksNOn   =  ( 𝑛  ∈  ℕ0 ,  𝑔  ∈  V  ↦  ( 𝑎  ∈  ( Vtx ‘ 𝑔 ) ,  𝑏  ∈  ( Vtx ‘ 𝑔 )  ↦  { 𝑤  ∈  ( 𝑛  WWalksN  𝑔 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑎  ∧  ( 𝑤 ‘ 𝑛 )  =  𝑏 ) } ) ) | 
						
							| 4 | 3 | mpondm0 | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( 𝑁  WWalksNOn  𝐺 )  =  ∅ ) | 
						
							| 5 | 4 | oveqd | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  =  ( 𝐴 ∅ 𝐵 ) ) | 
						
							| 6 |  | df-wwlksn | ⊢  WWalksN   =  ( 𝑛  ∈  ℕ0 ,  𝑔  ∈  V  ↦  { 𝑤  ∈  ( WWalks ‘ 𝑔 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑛  +  1 ) } ) | 
						
							| 7 | 6 | mpondm0 | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( 𝑁  WWalksN  𝐺 )  =  ∅ ) | 
						
							| 8 | 7 | rabeqdv | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) }  =  { 𝑤  ∈  ∅  ∣  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) } ) | 
						
							| 9 |  | rab0 | ⊢ { 𝑤  ∈  ∅  ∣  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) }  =  ∅ | 
						
							| 10 | 8 9 | eqtrdi | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) }  =  ∅ ) | 
						
							| 11 | 2 5 10 | 3eqtr4a | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) } ) | 
						
							| 12 | 1 | wwlksnon | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( 𝑁  WWalksNOn  𝐺 )  =  ( 𝑎  ∈  𝑉 ,  𝑏  ∈  𝑉  ↦  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑎  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑏 ) } ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  ( 𝑁  WWalksNOn  𝐺 )  =  ( 𝑎  ∈  𝑉 ,  𝑏  ∈  𝑉  ↦  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑎  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑏 ) } ) ) | 
						
							| 14 | 13 | oveqd | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  =  ( 𝐴 ( 𝑎  ∈  𝑉 ,  𝑏  ∈  𝑉  ↦  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑎  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑏 ) } ) 𝐵 ) ) | 
						
							| 15 |  | eqid | ⊢ ( 𝑎  ∈  𝑉 ,  𝑏  ∈  𝑉  ↦  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑎  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑏 ) } )  =  ( 𝑎  ∈  𝑉 ,  𝑏  ∈  𝑉  ↦  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑎  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑏 ) } ) | 
						
							| 16 | 15 | mpondm0 | ⊢ ( ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴 ( 𝑎  ∈  𝑉 ,  𝑏  ∈  𝑉  ↦  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑎  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑏 ) } ) 𝐵 )  =  ∅ ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  ( 𝐴 ( 𝑎  ∈  𝑉 ,  𝑏  ∈  𝑉  ↦  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑎  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑏 ) } ) 𝐵 )  =  ∅ ) | 
						
							| 18 | 14 17 | eqtrd | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  =  ∅ ) | 
						
							| 19 | 18 | ex | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  =  ∅ ) ) | 
						
							| 20 | 5 2 | eqtrdi | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  =  ∅ ) | 
						
							| 21 | 20 | a1d | ⊢ ( ¬  ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  →  ( ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  =  ∅ ) ) | 
						
							| 22 | 19 21 | pm2.61i | ⊢ ( ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  =  ∅ ) | 
						
							| 23 | 1 | wwlknllvtx | ⊢ ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( 𝑤 ‘ 0 )  ∈  𝑉  ∧  ( 𝑤 ‘ 𝑁 )  ∈  𝑉 ) ) | 
						
							| 24 |  | eleq1 | ⊢ ( 𝐴  =  ( 𝑤 ‘ 0 )  →  ( 𝐴  ∈  𝑉  ↔  ( 𝑤 ‘ 0 )  ∈  𝑉 ) ) | 
						
							| 25 | 24 | eqcoms | ⊢ ( ( 𝑤 ‘ 0 )  =  𝐴  →  ( 𝐴  ∈  𝑉  ↔  ( 𝑤 ‘ 0 )  ∈  𝑉 ) ) | 
						
							| 26 |  | eleq1 | ⊢ ( 𝐵  =  ( 𝑤 ‘ 𝑁 )  →  ( 𝐵  ∈  𝑉  ↔  ( 𝑤 ‘ 𝑁 )  ∈  𝑉 ) ) | 
						
							| 27 | 26 | eqcoms | ⊢ ( ( 𝑤 ‘ 𝑁 )  =  𝐵  →  ( 𝐵  ∈  𝑉  ↔  ( 𝑤 ‘ 𝑁 )  ∈  𝑉 ) ) | 
						
							| 28 | 25 27 | bi2anan9 | ⊢ ( ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 )  →  ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ↔  ( ( 𝑤 ‘ 0 )  ∈  𝑉  ∧  ( 𝑤 ‘ 𝑁 )  ∈  𝑉 ) ) ) | 
						
							| 29 | 23 28 | syl5ibrcom | ⊢ ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 )  →  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) ) ) | 
						
							| 30 | 29 | con3rr3 | ⊢ ( ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ¬  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) ) ) | 
						
							| 31 | 30 | ralrimiv | ⊢ ( ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ∀ 𝑤  ∈  ( 𝑁  WWalksN  𝐺 ) ¬  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) ) | 
						
							| 32 |  | rabeq0 | ⊢ ( { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) }  =  ∅  ↔  ∀ 𝑤  ∈  ( 𝑁  WWalksN  𝐺 ) ¬  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) ) | 
						
							| 33 | 31 32 | sylibr | ⊢ ( ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) }  =  ∅ ) | 
						
							| 34 | 22 33 | eqtr4d | ⊢ ( ¬  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) } ) | 
						
							| 35 | 12 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  ( 𝑁  WWalksNOn  𝐺 )  =  ( 𝑎  ∈  𝑉 ,  𝑏  ∈  𝑉  ↦  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑎  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑏 ) } ) ) | 
						
							| 36 |  | eqeq2 | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝑤 ‘ 0 )  =  𝑎  ↔  ( 𝑤 ‘ 0 )  =  𝐴 ) ) | 
						
							| 37 |  | eqeq2 | ⊢ ( 𝑏  =  𝐵  →  ( ( 𝑤 ‘ 𝑁 )  =  𝑏  ↔  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) ) | 
						
							| 38 | 36 37 | bi2anan9 | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  ( ( ( 𝑤 ‘ 0 )  =  𝑎  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑏 )  ↔  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) ) ) | 
						
							| 39 | 38 | rabbidv | ⊢ ( ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 )  →  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑎  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑏 ) }  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) } ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  ∧  ( 𝑎  =  𝐴  ∧  𝑏  =  𝐵 ) )  →  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑎  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑏 ) }  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) } ) | 
						
							| 41 |  | simprl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 42 |  | simprr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  𝐵  ∈  𝑉 ) | 
						
							| 43 |  | ovex | ⊢ ( 𝑁  WWalksN  𝐺 )  ∈  V | 
						
							| 44 | 43 | rabex | ⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) }  ∈  V | 
						
							| 45 | 44 | a1i | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) }  ∈  V ) | 
						
							| 46 | 35 40 41 42 45 | ovmpod | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  V )  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) )  →  ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) } ) | 
						
							| 47 | 11 34 46 | ecase | ⊢ ( 𝐴 ( 𝑁  WWalksNOn  𝐺 ) 𝐵 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝐴  ∧  ( 𝑤 ‘ 𝑁 )  =  𝐵 ) } |