Step |
Hyp |
Ref |
Expression |
1 |
|
iswwlksnx.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
iswwlksnx.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
iswwlksn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ↔ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) ) |
4 |
1 2
|
iswwlks |
⊢ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ↔ ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
5 |
|
df-3an |
⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ↔ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
6 |
|
nn0p1gt0 |
⊢ ( 𝑁 ∈ ℕ0 → 0 < ( 𝑁 + 1 ) ) |
7 |
6
|
gt0ne0d |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ≠ 0 ) |
8 |
7
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( 𝑁 + 1 ) ≠ 0 ) |
9 |
|
neeq1 |
⊢ ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) → ( ( ♯ ‘ 𝑊 ) ≠ 0 ↔ ( 𝑁 + 1 ) ≠ 0 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( ( ♯ ‘ 𝑊 ) ≠ 0 ↔ ( 𝑁 + 1 ) ≠ 0 ) ) |
11 |
8 10
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( ♯ ‘ 𝑊 ) ≠ 0 ) |
12 |
|
hasheq0 |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑊 ) = 0 ↔ 𝑊 = ∅ ) ) |
13 |
12
|
necon3bid |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑊 ) ≠ 0 ↔ 𝑊 ≠ ∅ ) ) |
14 |
11 13
|
syl5ibcom |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( 𝑊 ∈ Word 𝑉 → 𝑊 ≠ ∅ ) ) |
15 |
14
|
pm4.71rd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( 𝑊 ∈ Word 𝑉 ↔ ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) ) ) |
16 |
15
|
bicomd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) ↔ 𝑊 ∈ Word 𝑉 ) ) |
17 |
16
|
anbi1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) |
18 |
5 17
|
syl5bb |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) |
19 |
4 18
|
syl5bb |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) |
20 |
19
|
ex |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) → ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) ) |
21 |
20
|
pm5.32rd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) ) |
22 |
|
df-3an |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) |
23 |
21 22
|
bitr4di |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) ) |
24 |
3 23
|
bitrd |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) ) |