| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isxmetd.0 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 2 |
|
isxmetd.1 |
⊢ ( 𝜑 → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
| 3 |
|
isxmet2d.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 0 ≤ ( 𝑥 𝐷 𝑦 ) ) |
| 4 |
|
isxmet2d.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 𝐷 𝑦 ) ≤ 0 ↔ 𝑥 = 𝑦 ) ) |
| 5 |
|
isxmet2d.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ ∧ ( 𝑧 𝐷 𝑦 ) ∈ ℝ ) ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) |
| 6 |
2
|
fovcdmda |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ) |
| 7 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 8 |
|
xrletri3 |
⊢ ( ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ ( ( 𝑥 𝐷 𝑦 ) ≤ 0 ∧ 0 ≤ ( 𝑥 𝐷 𝑦 ) ) ) ) |
| 9 |
6 7 8
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ ( ( 𝑥 𝐷 𝑦 ) ≤ 0 ∧ 0 ≤ ( 𝑥 𝐷 𝑦 ) ) ) ) |
| 10 |
3
|
biantrud |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 𝐷 𝑦 ) ≤ 0 ↔ ( ( 𝑥 𝐷 𝑦 ) ≤ 0 ∧ 0 ≤ ( 𝑥 𝐷 𝑦 ) ) ) ) |
| 11 |
9 10 4
|
3bitr2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
| 12 |
5
|
3expa |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ ∧ ( 𝑧 𝐷 𝑦 ) ∈ ℝ ) ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) |
| 13 |
|
rexadd |
⊢ ( ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ ∧ ( 𝑧 𝐷 𝑦 ) ∈ ℝ ) → ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) = ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) |
| 14 |
13
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ ∧ ( 𝑧 𝐷 𝑦 ) ∈ ℝ ) ) → ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) = ( ( 𝑧 𝐷 𝑥 ) + ( 𝑧 𝐷 𝑦 ) ) ) |
| 15 |
12 14
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ ∧ ( 𝑧 𝐷 𝑦 ) ∈ ℝ ) ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 16 |
15
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) ∈ ℝ ) ∧ ( 𝑧 𝐷 𝑦 ) ∈ ℝ ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 17 |
6
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ) |
| 18 |
|
pnfge |
⊢ ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ* → ( 𝑥 𝐷 𝑦 ) ≤ +∞ ) |
| 19 |
17 18
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐷 𝑦 ) ≤ +∞ ) |
| 20 |
19
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) ∈ ℝ ) ∧ ( 𝑧 𝐷 𝑦 ) = +∞ ) → ( 𝑥 𝐷 𝑦 ) ≤ +∞ ) |
| 21 |
|
oveq2 |
⊢ ( ( 𝑧 𝐷 𝑦 ) = +∞ → ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) = ( ( 𝑧 𝐷 𝑥 ) +𝑒 +∞ ) ) |
| 22 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐷 Fn ( 𝑋 × 𝑋 ) ) |
| 23 |
|
elxrge0 |
⊢ ( ( 𝑥 𝐷 𝑦 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( 𝑥 𝐷 𝑦 ) ) ) |
| 24 |
6 3 23
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐷 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 25 |
24
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 26 |
|
ffnov |
⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] +∞ ) ↔ ( 𝐷 Fn ( 𝑋 × 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ∈ ( 0 [,] +∞ ) ) ) |
| 27 |
22 25 26
|
sylanbrc |
⊢ ( 𝜑 → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] +∞ ) ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ( 0 [,] +∞ ) ) |
| 29 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) |
| 30 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) |
| 31 |
28 29 30
|
fovcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 𝐷 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
| 32 |
|
eliccxr |
⊢ ( ( 𝑧 𝐷 𝑥 ) ∈ ( 0 [,] +∞ ) → ( 𝑧 𝐷 𝑥 ) ∈ ℝ* ) |
| 33 |
31 32
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 𝐷 𝑥 ) ∈ ℝ* ) |
| 34 |
|
renemnf |
⊢ ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ → ( 𝑧 𝐷 𝑥 ) ≠ -∞ ) |
| 35 |
|
xaddpnf1 |
⊢ ( ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ* ∧ ( 𝑧 𝐷 𝑥 ) ≠ -∞ ) → ( ( 𝑧 𝐷 𝑥 ) +𝑒 +∞ ) = +∞ ) |
| 36 |
33 34 35
|
syl2an |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) ∈ ℝ ) → ( ( 𝑧 𝐷 𝑥 ) +𝑒 +∞ ) = +∞ ) |
| 37 |
21 36
|
sylan9eqr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) ∈ ℝ ) ∧ ( 𝑧 𝐷 𝑦 ) = +∞ ) → ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) = +∞ ) |
| 38 |
20 37
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) ∈ ℝ ) ∧ ( 𝑧 𝐷 𝑦 ) = +∞ ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 39 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) |
| 40 |
28 29 39
|
fovcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 𝐷 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
| 41 |
|
eliccxr |
⊢ ( ( 𝑧 𝐷 𝑦 ) ∈ ( 0 [,] +∞ ) → ( 𝑧 𝐷 𝑦 ) ∈ ℝ* ) |
| 42 |
40 41
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 𝐷 𝑦 ) ∈ ℝ* ) |
| 43 |
|
elxrge0 |
⊢ ( ( 𝑧 𝐷 𝑦 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝑧 𝐷 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( 𝑧 𝐷 𝑦 ) ) ) |
| 44 |
43
|
simprbi |
⊢ ( ( 𝑧 𝐷 𝑦 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝑧 𝐷 𝑦 ) ) |
| 45 |
40 44
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 0 ≤ ( 𝑧 𝐷 𝑦 ) ) |
| 46 |
|
ge0nemnf |
⊢ ( ( ( 𝑧 𝐷 𝑦 ) ∈ ℝ* ∧ 0 ≤ ( 𝑧 𝐷 𝑦 ) ) → ( 𝑧 𝐷 𝑦 ) ≠ -∞ ) |
| 47 |
42 45 46
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 𝐷 𝑦 ) ≠ -∞ ) |
| 48 |
47
|
a1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ¬ ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) → ( 𝑧 𝐷 𝑦 ) ≠ -∞ ) ) |
| 49 |
48
|
necon4bd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐷 𝑦 ) = -∞ → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) |
| 50 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) ∈ ℝ ) → ( ( 𝑧 𝐷 𝑦 ) = -∞ → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) |
| 51 |
50
|
imp |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) ∈ ℝ ) ∧ ( 𝑧 𝐷 𝑦 ) = -∞ ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 52 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) ∈ ℝ ) → ( 𝑧 𝐷 𝑦 ) ∈ ℝ* ) |
| 53 |
|
elxr |
⊢ ( ( 𝑧 𝐷 𝑦 ) ∈ ℝ* ↔ ( ( 𝑧 𝐷 𝑦 ) ∈ ℝ ∨ ( 𝑧 𝐷 𝑦 ) = +∞ ∨ ( 𝑧 𝐷 𝑦 ) = -∞ ) ) |
| 54 |
52 53
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) ∈ ℝ ) → ( ( 𝑧 𝐷 𝑦 ) ∈ ℝ ∨ ( 𝑧 𝐷 𝑦 ) = +∞ ∨ ( 𝑧 𝐷 𝑦 ) = -∞ ) ) |
| 55 |
16 38 51 54
|
mpjao3dan |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) ∈ ℝ ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 56 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) = +∞ ) → ( 𝑥 𝐷 𝑦 ) ≤ +∞ ) |
| 57 |
|
oveq1 |
⊢ ( ( 𝑧 𝐷 𝑥 ) = +∞ → ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) = ( +∞ +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 58 |
|
xaddpnf2 |
⊢ ( ( ( 𝑧 𝐷 𝑦 ) ∈ ℝ* ∧ ( 𝑧 𝐷 𝑦 ) ≠ -∞ ) → ( +∞ +𝑒 ( 𝑧 𝐷 𝑦 ) ) = +∞ ) |
| 59 |
42 47 58
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( +∞ +𝑒 ( 𝑧 𝐷 𝑦 ) ) = +∞ ) |
| 60 |
57 59
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) = +∞ ) → ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) = +∞ ) |
| 61 |
56 60
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) = +∞ ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 62 |
|
elxrge0 |
⊢ ( ( 𝑧 𝐷 𝑥 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝑧 𝐷 𝑥 ) ) ) |
| 63 |
62
|
simprbi |
⊢ ( ( 𝑧 𝐷 𝑥 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝑧 𝐷 𝑥 ) ) |
| 64 |
31 63
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 0 ≤ ( 𝑧 𝐷 𝑥 ) ) |
| 65 |
|
ge0nemnf |
⊢ ( ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝑧 𝐷 𝑥 ) ) → ( 𝑧 𝐷 𝑥 ) ≠ -∞ ) |
| 66 |
33 64 65
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 𝐷 𝑥 ) ≠ -∞ ) |
| 67 |
66
|
a1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ¬ ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) → ( 𝑧 𝐷 𝑥 ) ≠ -∞ ) ) |
| 68 |
67
|
necon4bd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐷 𝑥 ) = -∞ → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) |
| 69 |
68
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) ∧ ( 𝑧 𝐷 𝑥 ) = -∞ ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 70 |
|
elxr |
⊢ ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ* ↔ ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ ∨ ( 𝑧 𝐷 𝑥 ) = +∞ ∨ ( 𝑧 𝐷 𝑥 ) = -∞ ) ) |
| 71 |
33 70
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑧 𝐷 𝑥 ) ∈ ℝ ∨ ( 𝑧 𝐷 𝑥 ) = +∞ ∨ ( 𝑧 𝐷 𝑥 ) = -∞ ) ) |
| 72 |
55 61 69 71
|
mpjao3dan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) |
| 73 |
1 2 11 72
|
isxmetd |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |