| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id | ⊢ ( 𝐶  ∈  Cat  →  𝐶  ∈  Cat ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 3 |  | eqid | ⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) | 
						
							| 4 | 1 2 3 | zerooval | ⊢ ( 𝐶  ∈  Cat  →  ( ZeroO ‘ 𝐶 )  =  ( ( InitO ‘ 𝐶 )  ∩  ( TermO ‘ 𝐶 ) ) ) | 
						
							| 5 | 4 | eleq2d | ⊢ ( 𝐶  ∈  Cat  →  ( 𝑂  ∈  ( ZeroO ‘ 𝐶 )  ↔  𝑂  ∈  ( ( InitO ‘ 𝐶 )  ∩  ( TermO ‘ 𝐶 ) ) ) ) | 
						
							| 6 |  | elin | ⊢ ( 𝑂  ∈  ( ( InitO ‘ 𝐶 )  ∩  ( TermO ‘ 𝐶 ) )  ↔  ( 𝑂  ∈  ( InitO ‘ 𝐶 )  ∧  𝑂  ∈  ( TermO ‘ 𝐶 ) ) ) | 
						
							| 7 |  | initoo | ⊢ ( 𝐶  ∈  Cat  →  ( 𝑂  ∈  ( InitO ‘ 𝐶 )  →  𝑂  ∈  ( Base ‘ 𝐶 ) ) ) | 
						
							| 8 | 7 | adantrd | ⊢ ( 𝐶  ∈  Cat  →  ( ( 𝑂  ∈  ( InitO ‘ 𝐶 )  ∧  𝑂  ∈  ( TermO ‘ 𝐶 ) )  →  𝑂  ∈  ( Base ‘ 𝐶 ) ) ) | 
						
							| 9 | 6 8 | biimtrid | ⊢ ( 𝐶  ∈  Cat  →  ( 𝑂  ∈  ( ( InitO ‘ 𝐶 )  ∩  ( TermO ‘ 𝐶 ) )  →  𝑂  ∈  ( Base ‘ 𝐶 ) ) ) | 
						
							| 10 | 5 9 | sylbid | ⊢ ( 𝐶  ∈  Cat  →  ( 𝑂  ∈  ( ZeroO ‘ 𝐶 )  →  𝑂  ∈  ( Base ‘ 𝐶 ) ) ) | 
						
							| 11 | 10 | imp | ⊢ ( ( 𝐶  ∈  Cat  ∧  𝑂  ∈  ( ZeroO ‘ 𝐶 ) )  →  𝑂  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 12 |  | simpl | ⊢ ( ( 𝐶  ∈  Cat  ∧  𝑂  ∈  ( Base ‘ 𝐶 ) )  →  𝐶  ∈  Cat ) | 
						
							| 13 |  | simpr | ⊢ ( ( 𝐶  ∈  Cat  ∧  𝑂  ∈  ( Base ‘ 𝐶 ) )  →  𝑂  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 14 | 2 3 12 13 | iszeroo | ⊢ ( ( 𝐶  ∈  Cat  ∧  𝑂  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑂  ∈  ( ZeroO ‘ 𝐶 )  ↔  ( 𝑂  ∈  ( InitO ‘ 𝐶 )  ∧  𝑂  ∈  ( TermO ‘ 𝐶 ) ) ) ) | 
						
							| 15 | 14 | biimpd | ⊢ ( ( 𝐶  ∈  Cat  ∧  𝑂  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑂  ∈  ( ZeroO ‘ 𝐶 )  →  ( 𝑂  ∈  ( InitO ‘ 𝐶 )  ∧  𝑂  ∈  ( TermO ‘ 𝐶 ) ) ) ) | 
						
							| 16 | 15 | impancom | ⊢ ( ( 𝐶  ∈  Cat  ∧  𝑂  ∈  ( ZeroO ‘ 𝐶 ) )  →  ( 𝑂  ∈  ( Base ‘ 𝐶 )  →  ( 𝑂  ∈  ( InitO ‘ 𝐶 )  ∧  𝑂  ∈  ( TermO ‘ 𝐶 ) ) ) ) | 
						
							| 17 | 11 16 | jcai | ⊢ ( ( 𝐶  ∈  Cat  ∧  𝑂  ∈  ( ZeroO ‘ 𝐶 ) )  →  ( 𝑂  ∈  ( Base ‘ 𝐶 )  ∧  ( 𝑂  ∈  ( InitO ‘ 𝐶 )  ∧  𝑂  ∈  ( TermO ‘ 𝐶 ) ) ) ) |