Metamath Proof Explorer


Theorem it0e0

Description: i times 0 equals 0. (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion it0e0 ( i · 0 ) = 0

Proof

Step Hyp Ref Expression
1 ax-icn i ∈ ℂ
2 1 mul01i ( i · 0 ) = 0