Step |
Hyp |
Ref |
Expression |
1 |
|
df-itco |
⊢ IterComp = ( 𝑓 ∈ V ↦ seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝑓 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) ) ) ) |
2 |
|
eqidd |
⊢ ( 𝑓 = 𝐹 → 0 = 0 ) |
3 |
|
coeq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ∘ 𝑔 ) = ( 𝐹 ∘ 𝑔 ) ) |
4 |
3
|
mpoeq3dv |
⊢ ( 𝑓 = 𝐹 → ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝑓 ∘ 𝑔 ) ) = ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) ) |
5 |
|
dmeq |
⊢ ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 ) |
6 |
5
|
reseq2d |
⊢ ( 𝑓 = 𝐹 → ( I ↾ dom 𝑓 ) = ( I ↾ dom 𝐹 ) ) |
7 |
|
id |
⊢ ( 𝑓 = 𝐹 → 𝑓 = 𝐹 ) |
8 |
6 7
|
ifeq12d |
⊢ ( 𝑓 = 𝐹 → if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) = if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) |
9 |
8
|
mpteq2dv |
⊢ ( 𝑓 = 𝐹 → ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) |
10 |
2 4 9
|
seqeq123d |
⊢ ( 𝑓 = 𝐹 → seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝑓 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝑓 ) , 𝑓 ) ) ) = seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ) |
11 |
|
elex |
⊢ ( 𝐹 ∈ 𝑉 → 𝐹 ∈ V ) |
12 |
|
seqex |
⊢ seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ∈ V |
13 |
12
|
a1i |
⊢ ( 𝐹 ∈ 𝑉 → seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ∈ V ) |
14 |
1 10 11 13
|
fvmptd3 |
⊢ ( 𝐹 ∈ 𝑉 → ( IterComp ‘ 𝐹 ) = seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ) |