Step |
Hyp |
Ref |
Expression |
1 |
|
itcoval |
⊢ ( 𝐹 ∈ 𝑉 → ( IterComp ‘ 𝐹 ) = seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ) |
2 |
1
|
fveq1d |
⊢ ( 𝐹 ∈ 𝑉 → ( ( IterComp ‘ 𝐹 ) ‘ 0 ) = ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ 0 ) ) |
3 |
|
0z |
⊢ 0 ∈ ℤ |
4 |
|
eqidd |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) = ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) |
5 |
|
iftrue |
⊢ ( 𝑖 = 0 → if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) = ( I ↾ dom 𝐹 ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑖 = 0 ) → if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) = ( I ↾ dom 𝐹 ) ) |
7 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
8 |
7
|
a1i |
⊢ ( 𝐹 ∈ 𝑉 → 0 ∈ ℕ0 ) |
9 |
|
dmexg |
⊢ ( 𝐹 ∈ 𝑉 → dom 𝐹 ∈ V ) |
10 |
9
|
resiexd |
⊢ ( 𝐹 ∈ 𝑉 → ( I ↾ dom 𝐹 ) ∈ V ) |
11 |
4 6 8 10
|
fvmptd |
⊢ ( 𝐹 ∈ 𝑉 → ( ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ‘ 0 ) = ( I ↾ dom 𝐹 ) ) |
12 |
3 11
|
seq1i |
⊢ ( 𝐹 ∈ 𝑉 → ( seq 0 ( ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) , ( 𝑖 ∈ ℕ0 ↦ if ( 𝑖 = 0 , ( I ↾ dom 𝐹 ) , 𝐹 ) ) ) ‘ 0 ) = ( I ↾ dom 𝐹 ) ) |
13 |
2 12
|
eqtrd |
⊢ ( 𝐹 ∈ 𝑉 → ( ( IterComp ‘ 𝐹 ) ‘ 0 ) = ( I ↾ dom 𝐹 ) ) |