Step |
Hyp |
Ref |
Expression |
1 |
|
itcovalsuc |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑌 + 1 ) ) = ( 𝐺 ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) 𝐹 ) ) |
2 |
|
eqidd |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) = ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) ) |
3 |
|
coeq2 |
⊢ ( 𝑔 = 𝐺 → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ 𝐺 ) ) |
4 |
3
|
ad2antrl |
⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) ∧ ( 𝑔 = 𝐺 ∧ 𝑗 = 𝐹 ) ) → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ 𝐺 ) ) |
5 |
|
id |
⊢ ( 𝐺 = ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) → 𝐺 = ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) ) |
6 |
|
fvex |
⊢ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) ∈ V |
7 |
5 6
|
eqeltrdi |
⊢ ( 𝐺 = ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) → 𝐺 ∈ V ) |
8 |
7
|
eqcoms |
⊢ ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 → 𝐺 ∈ V ) |
9 |
8
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → 𝐺 ∈ V ) |
10 |
|
elex |
⊢ ( 𝐹 ∈ 𝑉 → 𝐹 ∈ V ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → 𝐹 ∈ V ) |
12 |
8
|
anim2i |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ V ) ) |
13 |
12
|
3adant2 |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ V ) ) |
14 |
|
coexg |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐺 ∈ V ) → ( 𝐹 ∘ 𝐺 ) ∈ V ) |
15 |
13 14
|
syl |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( 𝐹 ∘ 𝐺 ) ∈ V ) |
16 |
2 4 9 11 15
|
ovmpod |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( 𝐺 ( 𝑔 ∈ V , 𝑗 ∈ V ↦ ( 𝐹 ∘ 𝑔 ) ) 𝐹 ) = ( 𝐹 ∘ 𝐺 ) ) |
17 |
1 16
|
eqtrd |
⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝑌 ∈ ℕ0 ∧ ( ( IterComp ‘ 𝐹 ) ‘ 𝑌 ) = 𝐺 ) → ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑌 + 1 ) ) = ( 𝐹 ∘ 𝐺 ) ) |