| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							itcovalt2.f | 
							⊢ 𝐹  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 2  ·  𝑛 )  +  𝐶 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							nn0ex | 
							⊢ ℕ0  ∈  V  | 
						
						
							| 3 | 
							
								2
							 | 
							mptex | 
							⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( 2  ·  𝑛 )  +  𝐶 ) )  ∈  V  | 
						
						
							| 4 | 
							
								1 3
							 | 
							eqeltri | 
							⊢ 𝐹  ∈  V  | 
						
						
							| 5 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑦  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  →  𝑦  ∈  ℕ0 )  | 
						
						
							| 6 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 ) ) )  →  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							itcovalsucov | 
							⊢ ( ( 𝐹  ∈  V  ∧  𝑦  ∈  ℕ0  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 ) ) )  →  ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦  +  1 ) )  =  ( 𝐹  ∘  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 ) ) ) )  | 
						
						
							| 8 | 
							
								4 5 6 7
							 | 
							mp3an2ani | 
							⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 ) ) )  →  ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦  +  1 ) )  =  ( 𝐹  ∘  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							2nn | 
							⊢ 2  ∈  ℕ  | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							⊢ ( 𝑦  ∈  ℕ0  →  2  ∈  ℕ )  | 
						
						
							| 11 | 
							
								
							 | 
							id | 
							⊢ ( 𝑦  ∈  ℕ0  →  𝑦  ∈  ℕ0 )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							nnexpcld | 
							⊢ ( 𝑦  ∈  ℕ0  →  ( 2 ↑ 𝑦 )  ∈  ℕ )  | 
						
						
							| 13 | 
							
								
							 | 
							itcovalt2lem2lem1 | 
							⊢ ( ( ( ( 2 ↑ 𝑦 )  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 )  ∈  ℕ0 )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							sylanl1 | 
							⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 )  ∈  ℕ0 )  | 
						
						
							| 15 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( 𝑦  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑛  =  𝑚  →  ( 2  ·  𝑛 )  =  ( 2  ·  𝑚 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							oveq1d | 
							⊢ ( 𝑛  =  𝑚  →  ( ( 2  ·  𝑛 )  +  𝐶 )  =  ( ( 2  ·  𝑚 )  +  𝐶 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							cbvmptv | 
							⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( 2  ·  𝑛 )  +  𝐶 ) )  =  ( 𝑚  ∈  ℕ0  ↦  ( ( 2  ·  𝑚 )  +  𝐶 ) )  | 
						
						
							| 19 | 
							
								1 18
							 | 
							eqtri | 
							⊢ 𝐹  =  ( 𝑚  ∈  ℕ0  ↦  ( ( 2  ·  𝑚 )  +  𝐶 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							a1i | 
							⊢ ( ( 𝑦  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  →  𝐹  =  ( 𝑚  ∈  ℕ0  ↦  ( ( 2  ·  𝑚 )  +  𝐶 ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑚  =  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 )  →  ( 2  ·  𝑚 )  =  ( 2  ·  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							oveq1d | 
							⊢ ( 𝑚  =  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 )  →  ( ( 2  ·  𝑚 )  +  𝐶 )  =  ( ( 2  ·  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 ) )  +  𝐶 ) )  | 
						
						
							| 23 | 
							
								14 15 20 22
							 | 
							fmptco | 
							⊢ ( ( 𝑦  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  →  ( 𝐹  ∘  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 2  ·  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 ) )  +  𝐶 ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							itcovalt2lem2lem2 | 
							⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 2  ·  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 ) )  +  𝐶 )  =  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ ( 𝑦  +  1 ) ) )  −  𝐶 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							mpteq2dva | 
							⊢ ( ( 𝑦  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 2  ·  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 ) )  +  𝐶 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ ( 𝑦  +  1 ) ) )  −  𝐶 ) ) )  | 
						
						
							| 26 | 
							
								23 25
							 | 
							eqtrd | 
							⊢ ( ( 𝑦  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  →  ( 𝐹  ∘  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ ( 𝑦  +  1 ) ) )  −  𝐶 ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							adantr | 
							⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 ) ) )  →  ( 𝐹  ∘  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ ( 𝑦  +  1 ) ) )  −  𝐶 ) ) )  | 
						
						
							| 28 | 
							
								8 27
							 | 
							eqtrd | 
							⊢ ( ( ( 𝑦  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 ) ) )  →  ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦  +  1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ ( 𝑦  +  1 ) ) )  −  𝐶 ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							ex | 
							⊢ ( ( 𝑦  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  →  ( ( ( IterComp ‘ 𝐹 ) ‘ 𝑦 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ 𝑦 ) )  −  𝐶 ) )  →  ( ( IterComp ‘ 𝐹 ) ‘ ( 𝑦  +  1 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝑛  +  𝐶 )  ·  ( 2 ↑ ( 𝑦  +  1 ) ) )  −  𝐶 ) ) ) )  |