| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nn0re | 
							⊢ ( 𝐶  ∈  ℕ0  →  𝐶  ∈  ℝ )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantl | 
							⊢ ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  →  𝐶  ∈  ℝ )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  𝐶  ∈  ℝ )  | 
						
						
							| 4 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℕ0 )  | 
						
						
							| 5 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  →  𝐶  ∈  ℕ0 )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  𝐶  ∈  ℕ0 )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							nn0addcld | 
							⊢ ( ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  +  𝐶 )  ∈  ℕ0 )  | 
						
						
							| 8 | 
							
								7
							 | 
							nn0red | 
							⊢ ( ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  +  𝐶 )  ∈  ℝ )  | 
						
						
							| 9 | 
							
								
							 | 
							nnnn0 | 
							⊢ ( 𝑌  ∈  ℕ  →  𝑌  ∈  ℕ0 )  | 
						
						
							| 10 | 
							
								9
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  𝑌  ∈  ℕ0 )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							nn0mulcld | 
							⊢ ( ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑁  +  𝐶 )  ·  𝑌 )  ∈  ℕ0 )  | 
						
						
							| 12 | 
							
								11
							 | 
							nn0red | 
							⊢ ( ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑁  +  𝐶 )  ·  𝑌 )  ∈  ℝ )  | 
						
						
							| 13 | 
							
								
							 | 
							nn0ge0 | 
							⊢ ( 𝑁  ∈  ℕ0  →  0  ≤  𝑁 )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantl | 
							⊢ ( ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  0  ≤  𝑁 )  | 
						
						
							| 15 | 
							
								6
							 | 
							nn0red | 
							⊢ ( ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  𝐶  ∈  ℝ )  | 
						
						
							| 16 | 
							
								4
							 | 
							nn0red | 
							⊢ ( ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℝ )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							addge02d | 
							⊢ ( ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 0  ≤  𝑁  ↔  𝐶  ≤  ( 𝑁  +  𝐶 ) ) )  | 
						
						
							| 18 | 
							
								14 17
							 | 
							mpbid | 
							⊢ ( ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  𝐶  ≤  ( 𝑁  +  𝐶 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  𝑌  ∈  ℕ )  | 
						
						
							| 20 | 
							
								19
							 | 
							nnred | 
							⊢ ( ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  𝑌  ∈  ℝ )  | 
						
						
							| 21 | 
							
								7
							 | 
							nn0ge0d | 
							⊢ ( ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  0  ≤  ( 𝑁  +  𝐶 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							nnge1 | 
							⊢ ( 𝑌  ∈  ℕ  →  1  ≤  𝑌 )  | 
						
						
							| 23 | 
							
								22
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  1  ≤  𝑌 )  | 
						
						
							| 24 | 
							
								8 20 21 23
							 | 
							lemulge11d | 
							⊢ ( ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  +  𝐶 )  ≤  ( ( 𝑁  +  𝐶 )  ·  𝑌 ) )  | 
						
						
							| 25 | 
							
								3 8 12 18 24
							 | 
							letrd | 
							⊢ ( ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  𝐶  ≤  ( ( 𝑁  +  𝐶 )  ·  𝑌 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							nn0sub | 
							⊢ ( ( 𝐶  ∈  ℕ0  ∧  ( ( 𝑁  +  𝐶 )  ·  𝑌 )  ∈  ℕ0 )  →  ( 𝐶  ≤  ( ( 𝑁  +  𝐶 )  ·  𝑌 )  ↔  ( ( ( 𝑁  +  𝐶 )  ·  𝑌 )  −  𝐶 )  ∈  ℕ0 ) )  | 
						
						
							| 27 | 
							
								6 11 26
							 | 
							syl2anc | 
							⊢ ( ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐶  ≤  ( ( 𝑁  +  𝐶 )  ·  𝑌 )  ↔  ( ( ( 𝑁  +  𝐶 )  ·  𝑌 )  −  𝐶 )  ∈  ℕ0 ) )  | 
						
						
							| 28 | 
							
								25 27
							 | 
							mpbid | 
							⊢ ( ( ( 𝑌  ∈  ℕ  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( ( 𝑁  +  𝐶 )  ·  𝑌 )  −  𝐶 )  ∈  ℕ0 )  |