| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							2cnd | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  2  ∈  ℂ )  | 
						
						
							| 2 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℕ0 )  | 
						
						
							| 3 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  →  𝐶  ∈  ℕ0 )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  𝐶  ∈  ℕ0 )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							nn0addcld | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  +  𝐶 )  ∈  ℕ0 )  | 
						
						
							| 6 | 
							
								5
							 | 
							nn0cnd | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  +  𝐶 )  ∈  ℂ )  | 
						
						
							| 7 | 
							
								
							 | 
							2nn0 | 
							⊢ 2  ∈  ℕ0  | 
						
						
							| 8 | 
							
								7
							 | 
							a1i | 
							⊢ ( 𝑌  ∈  ℕ0  →  2  ∈  ℕ0 )  | 
						
						
							| 9 | 
							
								
							 | 
							id | 
							⊢ ( 𝑌  ∈  ℕ0  →  𝑌  ∈  ℕ0 )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							nn0expcld | 
							⊢ ( 𝑌  ∈  ℕ0  →  ( 2 ↑ 𝑌 )  ∈  ℕ0 )  | 
						
						
							| 11 | 
							
								10
							 | 
							nn0cnd | 
							⊢ ( 𝑌  ∈  ℕ0  →  ( 2 ↑ 𝑌 )  ∈  ℂ )  | 
						
						
							| 12 | 
							
								11
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 2 ↑ 𝑌 )  ∈  ℂ )  | 
						
						
							| 13 | 
							
								6 12
							 | 
							mulcld | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑁  +  𝐶 )  ·  ( 2 ↑ 𝑌 ) )  ∈  ℂ )  | 
						
						
							| 14 | 
							
								
							 | 
							nn0cn | 
							⊢ ( 𝐶  ∈  ℕ0  →  𝐶  ∈  ℂ )  | 
						
						
							| 15 | 
							
								14
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  𝐶  ∈  ℂ )  | 
						
						
							| 16 | 
							
								1 13 15
							 | 
							subdid | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 2  ·  ( ( ( 𝑁  +  𝐶 )  ·  ( 2 ↑ 𝑌 ) )  −  𝐶 ) )  =  ( ( 2  ·  ( ( 𝑁  +  𝐶 )  ·  ( 2 ↑ 𝑌 ) ) )  −  ( 2  ·  𝐶 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							oveq1d | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 2  ·  ( ( ( 𝑁  +  𝐶 )  ·  ( 2 ↑ 𝑌 ) )  −  𝐶 ) )  +  𝐶 )  =  ( ( ( 2  ·  ( ( 𝑁  +  𝐶 )  ·  ( 2 ↑ 𝑌 ) ) )  −  ( 2  ·  𝐶 ) )  +  𝐶 ) )  | 
						
						
							| 18 | 
							
								7
							 | 
							a1i | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  2  ∈  ℕ0 )  | 
						
						
							| 19 | 
							
								10
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 2 ↑ 𝑌 )  ∈  ℕ0 )  | 
						
						
							| 20 | 
							
								5 19
							 | 
							nn0mulcld | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑁  +  𝐶 )  ·  ( 2 ↑ 𝑌 ) )  ∈  ℕ0 )  | 
						
						
							| 21 | 
							
								18 20
							 | 
							nn0mulcld | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 2  ·  ( ( 𝑁  +  𝐶 )  ·  ( 2 ↑ 𝑌 ) ) )  ∈  ℕ0 )  | 
						
						
							| 22 | 
							
								21
							 | 
							nn0cnd | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 2  ·  ( ( 𝑁  +  𝐶 )  ·  ( 2 ↑ 𝑌 ) ) )  ∈  ℂ )  | 
						
						
							| 23 | 
							
								7
							 | 
							a1i | 
							⊢ ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  →  2  ∈  ℕ0 )  | 
						
						
							| 24 | 
							
								23 3
							 | 
							nn0mulcld | 
							⊢ ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  →  ( 2  ·  𝐶 )  ∈  ℕ0 )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantr | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 2  ·  𝐶 )  ∈  ℕ0 )  | 
						
						
							| 26 | 
							
								25
							 | 
							nn0cnd | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 2  ·  𝐶 )  ∈  ℂ )  | 
						
						
							| 27 | 
							
								4
							 | 
							nn0cnd | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  𝐶  ∈  ℂ )  | 
						
						
							| 28 | 
							
								22 26 27
							 | 
							subsubd | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 2  ·  ( ( 𝑁  +  𝐶 )  ·  ( 2 ↑ 𝑌 ) ) )  −  ( ( 2  ·  𝐶 )  −  𝐶 ) )  =  ( ( ( 2  ·  ( ( 𝑁  +  𝐶 )  ·  ( 2 ↑ 𝑌 ) ) )  −  ( 2  ·  𝐶 ) )  +  𝐶 ) )  | 
						
						
							| 29 | 
							
								1 6 12
							 | 
							mul12d | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 2  ·  ( ( 𝑁  +  𝐶 )  ·  ( 2 ↑ 𝑌 ) ) )  =  ( ( 𝑁  +  𝐶 )  ·  ( 2  ·  ( 2 ↑ 𝑌 ) ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							2cnd | 
							⊢ ( 𝑌  ∈  ℕ0  →  2  ∈  ℂ )  | 
						
						
							| 31 | 
							
								30 11
							 | 
							mulcomd | 
							⊢ ( 𝑌  ∈  ℕ0  →  ( 2  ·  ( 2 ↑ 𝑌 ) )  =  ( ( 2 ↑ 𝑌 )  ·  2 ) )  | 
						
						
							| 32 | 
							
								30 9
							 | 
							expp1d | 
							⊢ ( 𝑌  ∈  ℕ0  →  ( 2 ↑ ( 𝑌  +  1 ) )  =  ( ( 2 ↑ 𝑌 )  ·  2 ) )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							eqtr4d | 
							⊢ ( 𝑌  ∈  ℕ0  →  ( 2  ·  ( 2 ↑ 𝑌 ) )  =  ( 2 ↑ ( 𝑌  +  1 ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 2  ·  ( 2 ↑ 𝑌 ) )  =  ( 2 ↑ ( 𝑌  +  1 ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							oveq2d | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑁  +  𝐶 )  ·  ( 2  ·  ( 2 ↑ 𝑌 ) ) )  =  ( ( 𝑁  +  𝐶 )  ·  ( 2 ↑ ( 𝑌  +  1 ) ) ) )  | 
						
						
							| 36 | 
							
								29 35
							 | 
							eqtrd | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( 2  ·  ( ( 𝑁  +  𝐶 )  ·  ( 2 ↑ 𝑌 ) ) )  =  ( ( 𝑁  +  𝐶 )  ·  ( 2 ↑ ( 𝑌  +  1 ) ) ) )  | 
						
						
							| 37 | 
							
								
							 | 
							2txmxeqx | 
							⊢ ( 𝐶  ∈  ℂ  →  ( ( 2  ·  𝐶 )  −  𝐶 )  =  𝐶 )  | 
						
						
							| 38 | 
							
								14 37
							 | 
							syl | 
							⊢ ( 𝐶  ∈  ℕ0  →  ( ( 2  ·  𝐶 )  −  𝐶 )  =  𝐶 )  | 
						
						
							| 39 | 
							
								38
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 2  ·  𝐶 )  −  𝐶 )  =  𝐶 )  | 
						
						
							| 40 | 
							
								36 39
							 | 
							oveq12d | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 2  ·  ( ( 𝑁  +  𝐶 )  ·  ( 2 ↑ 𝑌 ) ) )  −  ( ( 2  ·  𝐶 )  −  𝐶 ) )  =  ( ( ( 𝑁  +  𝐶 )  ·  ( 2 ↑ ( 𝑌  +  1 ) ) )  −  𝐶 ) )  | 
						
						
							| 41 | 
							
								17 28 40
							 | 
							3eqtr2d | 
							⊢ ( ( ( 𝑌  ∈  ℕ0  ∧  𝐶  ∈  ℕ0 )  ∧  𝑁  ∈  ℕ0 )  →  ( ( 2  ·  ( ( ( 𝑁  +  𝐶 )  ·  ( 2 ↑ 𝑌 ) )  −  𝐶 ) )  +  𝐶 )  =  ( ( ( 𝑁  +  𝐶 )  ·  ( 2 ↑ ( 𝑌  +  1 ) ) )  −  𝐶 ) )  |