| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) | 
						
							| 2 | 1 | dfitg | ⊢ ∫ ∅ 𝐴  d 𝑥  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) ) | 
						
							| 3 |  | ifan | ⊢ if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  if ( 𝑥  ∈  ∅ ,  if ( 0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 ) | 
						
							| 4 |  | noel | ⊢ ¬  𝑥  ∈  ∅ | 
						
							| 5 | 4 | iffalsei | ⊢ if ( 𝑥  ∈  ∅ ,  if ( 0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ,  0 )  =  0 | 
						
							| 6 | 3 5 | eqtri | ⊢ if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 )  =  0 | 
						
							| 7 | 6 | mpteq2i | ⊢ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  =  ( 𝑥  ∈  ℝ  ↦  0 ) | 
						
							| 8 |  | fconstmpt | ⊢ ( ℝ  ×  { 0 } )  =  ( 𝑥  ∈  ℝ  ↦  0 ) | 
						
							| 9 | 7 8 | eqtr4i | ⊢ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 ) )  =  ( ℝ  ×  { 0 } ) | 
						
							| 10 | 9 | fveq2i | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  =  ( ∫2 ‘ ( ℝ  ×  { 0 } ) ) | 
						
							| 11 |  | itg20 | ⊢ ( ∫2 ‘ ( ℝ  ×  { 0 } ) )  =  0 | 
						
							| 12 | 10 11 | eqtri | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) )  =  0 | 
						
							| 13 | 12 | oveq2i | ⊢ ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  ( ( i ↑ 𝑘 )  ·  0 ) | 
						
							| 14 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 15 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 16 |  | expcl | ⊢ ( ( i  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( i ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 17 | 14 15 16 | sylancr | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  ( i ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 18 | 17 | mul01d | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  ( ( i ↑ 𝑘 )  ·  0 )  =  0 ) | 
						
							| 19 | 13 18 | eqtrid | ⊢ ( 𝑘  ∈  ( 0 ... 3 )  →  ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  0 ) | 
						
							| 20 | 19 | sumeq2i | ⊢ Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  Σ 𝑘  ∈  ( 0 ... 3 ) 0 | 
						
							| 21 |  | fzfi | ⊢ ( 0 ... 3 )  ∈  Fin | 
						
							| 22 | 21 | olci | ⊢ ( ( 0 ... 3 )  ⊆  ( ℤ≥ ‘ 0 )  ∨  ( 0 ... 3 )  ∈  Fin ) | 
						
							| 23 |  | sumz | ⊢ ( ( ( 0 ... 3 )  ⊆  ( ℤ≥ ‘ 0 )  ∨  ( 0 ... 3 )  ∈  Fin )  →  Σ 𝑘  ∈  ( 0 ... 3 ) 0  =  0 ) | 
						
							| 24 | 22 23 | ax-mp | ⊢ Σ 𝑘  ∈  ( 0 ... 3 ) 0  =  0 | 
						
							| 25 | 20 24 | eqtri | ⊢ Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  ∅  ∧  0  ≤  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐴  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) )  =  0 | 
						
							| 26 | 2 25 | eqtri | ⊢ ∫ ∅ 𝐴  d 𝑥  =  0 |