Step |
Hyp |
Ref |
Expression |
1 |
|
i1f0 |
⊢ ( ℝ × { 0 } ) ∈ dom ∫1 |
2 |
|
itg1val |
⊢ ( ( ℝ × { 0 } ) ∈ dom ∫1 → ( ∫1 ‘ ( ℝ × { 0 } ) ) = Σ 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ ( ℝ × { 0 } ) “ { 𝑥 } ) ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( ∫1 ‘ ( ℝ × { 0 } ) ) = Σ 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ ( ℝ × { 0 } ) “ { 𝑥 } ) ) ) |
4 |
|
rnxpss |
⊢ ran ( ℝ × { 0 } ) ⊆ { 0 } |
5 |
|
ssdif0 |
⊢ ( ran ( ℝ × { 0 } ) ⊆ { 0 } ↔ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) = ∅ ) |
6 |
4 5
|
mpbi |
⊢ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) = ∅ |
7 |
6
|
sumeq1i |
⊢ Σ 𝑥 ∈ ( ran ( ℝ × { 0 } ) ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ ( ℝ × { 0 } ) “ { 𝑥 } ) ) ) = Σ 𝑥 ∈ ∅ ( 𝑥 · ( vol ‘ ( ◡ ( ℝ × { 0 } ) “ { 𝑥 } ) ) ) |
8 |
|
sum0 |
⊢ Σ 𝑥 ∈ ∅ ( 𝑥 · ( vol ‘ ( ◡ ( ℝ × { 0 } ) “ { 𝑥 } ) ) ) = 0 |
9 |
3 7 8
|
3eqtri |
⊢ ( ∫1 ‘ ( ℝ × { 0 } ) ) = 0 |