Metamath Proof Explorer


Theorem itg1add

Description: The integral of a sum of simple functions is the sum of the integrals. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Hypotheses i1fadd.1 ( 𝜑𝐹 ∈ dom ∫1 )
i1fadd.2 ( 𝜑𝐺 ∈ dom ∫1 )
Assertion itg1add ( 𝜑 → ( ∫1 ‘ ( 𝐹f + 𝐺 ) ) = ( ( ∫1𝐹 ) + ( ∫1𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 i1fadd.1 ( 𝜑𝐹 ∈ dom ∫1 )
2 i1fadd.2 ( 𝜑𝐺 ∈ dom ∫1 )
3 eqid ( 𝑖 ∈ ℝ , 𝑗 ∈ ℝ ↦ if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( 𝐹 “ { 𝑖 } ) ∩ ( 𝐺 “ { 𝑗 } ) ) ) ) ) = ( 𝑖 ∈ ℝ , 𝑗 ∈ ℝ ↦ if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( 𝐹 “ { 𝑖 } ) ∩ ( 𝐺 “ { 𝑗 } ) ) ) ) )
4 eqid ( + ↾ ( ran 𝐹 × ran 𝐺 ) ) = ( + ↾ ( ran 𝐹 × ran 𝐺 ) )
5 1 2 3 4 itg1addlem5 ( 𝜑 → ( ∫1 ‘ ( 𝐹f + 𝐺 ) ) = ( ( ∫1𝐹 ) + ( ∫1𝐺 ) ) )