Description: The integral of a sum of simple functions is the sum of the integrals. (Contributed by Mario Carneiro, 28-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | i1fadd.1 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
i1fadd.2 | ⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) | ||
Assertion | itg1add | ⊢ ( 𝜑 → ( ∫1 ‘ ( 𝐹 ∘f + 𝐺 ) ) = ( ( ∫1 ‘ 𝐹 ) + ( ∫1 ‘ 𝐺 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | i1fadd.1 | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) | |
2 | i1fadd.2 | ⊢ ( 𝜑 → 𝐺 ∈ dom ∫1 ) | |
3 | eqid | ⊢ ( 𝑖 ∈ ℝ , 𝑗 ∈ ℝ ↦ if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) ) = ( 𝑖 ∈ ℝ , 𝑗 ∈ ℝ ↦ if ( ( 𝑖 = 0 ∧ 𝑗 = 0 ) , 0 , ( vol ‘ ( ( ◡ 𝐹 “ { 𝑖 } ) ∩ ( ◡ 𝐺 “ { 𝑗 } ) ) ) ) ) | |
4 | eqid | ⊢ ( + ↾ ( ran 𝐹 × ran 𝐺 ) ) = ( + ↾ ( ran 𝐹 × ran 𝐺 ) ) | |
5 | 1 2 3 4 | itg1addlem5 | ⊢ ( 𝜑 → ( ∫1 ‘ ( 𝐹 ∘f + 𝐺 ) ) = ( ( ∫1 ‘ 𝐹 ) + ( ∫1 ‘ 𝐺 ) ) ) |