| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg1addlem.1 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 2 |
|
itg1addlem.2 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 3 |
|
itg1addlem.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ⊆ ( ◡ 𝐹 “ { 𝑘 } ) ) |
| 4 |
|
itg1addlem.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ dom vol ) |
| 5 |
|
itg1addlem.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( vol ‘ 𝐵 ) ∈ ℝ ) |
| 6 |
4 5
|
jca |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) |
| 7 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) |
| 8 |
3
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → 𝐵 ⊆ ( ◡ 𝐹 “ { 𝑘 } ) ) |
| 9 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
| 10 |
8 9
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 𝑘 } ) ) |
| 11 |
1
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → 𝐹 Fn 𝑋 ) |
| 13 |
|
fniniseg |
⊢ ( 𝐹 Fn 𝑋 → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑘 } ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) ) |
| 14 |
12 13
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 𝑘 } ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) ) |
| 15 |
10 14
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑘 ) ) |
| 16 |
15
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑘 ) |
| 17 |
16
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) = 𝑘 ) |
| 18 |
|
invdisj |
⊢ ( ∀ 𝑘 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( 𝐹 ‘ 𝑥 ) = 𝑘 → Disj 𝑘 ∈ 𝐴 𝐵 ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → Disj 𝑘 ∈ 𝐴 𝐵 ) |
| 20 |
|
volfiniun |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ 𝐴 𝐵 ) → ( vol ‘ ∪ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( vol ‘ 𝐵 ) ) |
| 21 |
2 7 19 20
|
syl3anc |
⊢ ( 𝜑 → ( vol ‘ ∪ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( vol ‘ 𝐵 ) ) |